Aitziber Cortajarena

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4948067/aitziber-cortajarena-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

110
papers2,812
citations31
h-index48
g-index117
ext. papers3,296
ext. citations7.3
avg, IF5.35
L-index

#	Paper	IF	Citations
110	Protein-based (bio)materials: a way toward high-performance graphene enzymatic biosensors. Journal of Materials Chemistry C, 2022 , 10, 5466-5473	7.1	O
109	Intraparticle Kinetics Unveil Crowding and Enzyme Distribution Effects on the Performance of Cofactor-Dependent Heterogeneous Biocatalysts <i>ACS Catalysis</i> , 2021 , 11, 15051-15067	13.1	3
108	Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids <i>Chemical Science</i> , 2021 , 12, 15090-15103	9.4	2
107	Boosting the Photoluminescent Properties of Protein-Stabilized Gold Nanoclusters through Protein Engineering. <i>Nano Letters</i> , 2021 , 21, 9347-9353	11.5	3
106	3D-Printed Bioplastics with Shape-Memory Behavior Based on Native Bovine Serum Albumin. <i>ACS Applied Materials & Applied & App</i>	9.5	8
105	Enhancing the Photocatalytic Conversion of Pt(IV) Substrates by Flavoprotein Engineering. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4504-4508	6.4	3
104	Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. <i>Nature Protocols</i> , 2021 , 16, 2851-2885	18.8	7
103	Engineering conductive protein films through nanoscale self-assembly and gold nanoparticles doping. <i>Nanoscale</i> , 2021 , 13, 6772-6779	7.7	2
102	Immobilization Screening and Characterization of an Alcohol Dehydrogenase and its Application to the Multi-Enzymatic Selective Oxidation of 1,-Omega-Diols. <i>Frontiers in Catalysis</i> , 2021 , 1,		2
101	Biomarker sensing platforms based on fluorescent metal nanoclusters. <i>Nanoscale Advances</i> , 2021 , 3, 1331-1341	5.1	6
100	Iron Oxide Nanoparticles as Carriers for DOX and Magnetic Hyperthermia after Intratumoral Application into Breast Cancer in Mice: Impact and Future Perspectives. <i>Nanomaterials</i> , 2020 , 10,	5.4	19
99	Protein-based functional hybrid bionanomaterials by bottom-up approaches. <i>Current Opinion in Structural Biology</i> , 2020 , 63, 74-81	8.1	10
98	Tailored Functionalized Magnetic Nanoparticles to Target Breast Cancer Cells Including Cancer Stem-Like Cells. <i>Cancers</i> , 2020 , 12,	6.6	6
97	Protein Design for the Synthesis and Stabilization of Highly Fluorescent Quantum Dots. <i>Chemistry of Materials</i> , 2020 , 32, 5729-5738	9.6	7
96	White-emitting Protein-Metal Nanocluster Phosphors for Highly Performing Biohybrid Light-Emitting Diodes. <i>Nano Letters</i> , 2020 , 20, 2710-2716	11.5	27
95	Magnetic core-shell nanowires as MRI contrast agents for cell tracking. <i>Journal of Nanobiotechnology</i> , 2020 , 18, 42	9.4	13
94	Cancer Nano-Immunotherapy from the Injection to the Target: The Role of Protein Corona. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	8

93	Immobilization of Enzymes in Protein Films. <i>Methods in Molecular Biology</i> , 2020 , 2100, 211-226	1.4	1
92	Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quenching biophosphors. <i>Nature Communications</i> , 2020 , 11, 879	17.4	16
91	Biogenic fluorescent protein lik fibroin phosphors for high performing light-emitting diodes. <i>Materials Horizons</i> , 2020 , 7, 1790-1800	14.4	13
90	Protein-directed crystalline 2D fullerene assemblies. <i>Nanoscale</i> , 2020 , 12, 3614-3622	7.7	8
89	Discovering Biomolecules with Activity: Designed Repeat Proteins as Biocatalysts for (3 + 2) Cycloadditions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 762-776	16.4	6
88	Flavin Bioorthogonal Photocatalysis Toward Platinum Substrates. ACS Catalysis, 2020 , 10, 187-196	13.1	17
87	Toward supramolecular nanozymes for the photocatalytic activation of Pt(IV) anticancer prodrugs. <i>Chemical Communications</i> , 2020 , 56, 10461-10464	5.8	7
86	Engineering multifunctional metal/protein hybrid nanomaterials as tools for therapeutic intervention and high-sensitivity detection. <i>Chemical Science</i> , 2020 , 12, 2480-2487	9.4	8
85	Engineered protein-based functional nanopatterned materials for bio-optical devices. <i>Nanoscale Advances</i> , 2019 , 1, 3980-3991	5.1	11
84	The phenotype of target pancreatic cancer cells influences cell death by magnetic hyperthermia with nanoparticles carrying gemicitabine and the pseudo-peptide NucAnt. <i>Nanomedicine:</i> Nanotechnology, Biology, and Medicine, 2019 , 20, 101983	6	22
83	Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters. <i>Chemical Communications</i> , 2019 , 55, 3319-3322	5.8	9
82	A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6214-6219	16.4	43
81	A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. <i>Angewandte Chemie</i> , 2019 , 131, 6280-6285	3.6	O
80	Biocatalytic Protein-Based Materials for Integration into Energy Devices. <i>ChemBioChem</i> , 2019 , 20, 1977	7-3985	7
79	Deciphering Limitations to Meet Highly Stable Bio-Hybrid Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2019 , 29, 1904356	15.6	7
78	Proteins are Solitary! Pathways of Protein Folding and Aggregation in Protein Mixtures. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4800-4804	6.4	13
77	A Versatile Approach for the Assembly of Highly Tunable Biocatalytic Thin Films. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900598	4.6	5
76	Iron-Based Core-Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 43976-43988	9.5	19

75	Mechanical performance of gelatin fiber mesh scaffolds reinforced with nano-hydroxyapatite under bone damage mechanisms. <i>Materials Today Communications</i> , 2019 , 19, 140-147	2.5	8
74	Charge-Induced Shifts in Chiral Surface Plasmon Modes in Gold Nanorod Assemblies. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1800368	3.1	3
73	Fluorescent Flavoprotein Heterodimers: Combining Photostability with Singlet Oxygen Generation. <i>ChemPhotoChem</i> , 2018 , 2, 571-574	3.3	4
72	Bioorthogonal Catalytic Activation of Platinum and Ruthenium Anticancer Complexes by FAD and Flavoproteins. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3143-3147	16.4	43
71	Fabrication of biocompatible and efficient antimicrobial porous polymer surfaces by the Breath Figures approach. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 820-830	9.3	13
70	Bioorthogonal Catalytic Activation of Platinum and Ruthenium Anticancer Complexes by FAD and Flavoproteins. <i>Angewandte Chemie</i> , 2018 , 130, 3197-3201	3.6	16
69	Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3225-3230	11.5	124
68	Toward Bioelectronic Nanomaterials: Photoconductivity in Protein B orphyrin Hybrids Wrapped around SWCNT. <i>Advanced Functional Materials</i> , 2018 , 28, 1704031	15.6	23
67	Self-assembly of repeat proteins: Concepts and design of new interfaces. <i>Journal of Structural Biology</i> , 2018 , 201, 118-129	3.4	8
66	Sensors Based on Metal Nanoclusters Stabilized on Designed Proteins. <i>Biosensors</i> , 2018 , 8,	5.9	10
65	Reduction of cardiac TGFEmediated profibrotic events by inhibition of Hsp90 with engineered protein. <i>Journal of Molecular and Cellular Cardiology</i> , 2018 , 123, 75-87	5.8	7
64	Smart pH-Responsive Antimicrobial Hydrogel Scaffolds Prepared by Additive Manufacturing <i>ACS Applied Bio Materials</i> , 2018 , 1, 1337-1347	4.1	21
63	Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2017 , 1861, 1597-1605	4	50
62	Hydrogels with Modulated Ionic Load for Mammalian Cell Harvesting with Reduced Bacterial Adhesion. <i>Biomacromolecules</i> , 2017 , 18, 1521-1531	6.9	12
61	Elucidation of the Physicochemical Properties Ruling the Colloidal Stability of Iron Oxide Nanoparticles under Physiological Conditions. <i>ChemNanoMat</i> , 2017 , 3, 183-189	3.5	15
60	An experimental and computational framework for engineering multifunctional nanoparticles: designing selective anticancer therapies. <i>Nanoscale</i> , 2017 , 9, 13760-13771	7.7	8
59	Antimicrobial 3D Porous Scaffolds Prepared by Additive Manufacturing and Breath Figures. <i>ACS Applied Materials & District Materials & </i>	9.5	22
58	Highly Efficient Antibacterial Surfaces Based on Bacterial/Cell Size Selective Microporous Supports. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 44270-44280	9.5	22

(2015-2017)

57	Preparation of Biodegradable Cationic Polycarbonates and Hydrogels through the Direct Polymerization of Quaternized Cyclic Carbonates. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1567-1575	5.5	21	
56	Extracellular heat shock protein 90 binding to TGFIreceptor I participates in TGFImediated collagen production in myocardial fibroblasts. <i>Cellular Signalling</i> , 2016 , 28, 1563-79	4.9	39	
55	Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. <i>Scientific Reports</i> , 2016 , 6, 35786	4.9	47	
54	Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. <i>Chemical Communications</i> , 2016 , 52, 8405-8	5.8	22	
53	Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. <i>Nanotechnology</i> , 2016 , 27, 065103	3.4	82	
52	Assembly of designed protein scaffolds into monolayers for nanoparticle patterning. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 141, 93-101	6	13	
51	Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state. <i>Chemical Science</i> , 2016 , 7, 4842-4847	9.4	23	
50	Antibacterial Activity of DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence. <i>ACS Applied Materials & Discourse ACS Applied Materials & Discourse ACS Applied Materials & Discourse ACS Applied Materials & Discourse Dis</i>	9.5	71	
49	Designed Repeat Proteins as Building Blocks for Nanofabrication. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 940, 61-81	3.6	13	
48	Protein Design for Nanostructural Engineering: General Aspects. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 940, 1-5	3.6	2	
47	Protein Design for Nanostructural Engineering: Concluding Remarks and Future Directions. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 940, 281-284	3.6	2	
46	Probing the Molecular Origin of Native-State Flexibility in Repeat Proteins. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10367-73	16.4	13	
45	BSA-coated magnetic nanoparticles for improved therapeutic properties. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 6239-6247	7.3	34	
44	Poly(ethylene oxide) functionalized polyimide-based microporous films to prevent bacterial adhesion. <i>ACS Applied Materials & </i>	9.5	18	
43	Designed Modular Proteins as Scaffolds To Stabilize Fluorescent Nanoclusters. <i>Biomacromolecules</i> , 2015 , 16, 3836-44	6.9	33	
42	Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. <i>Breast Cancer Research</i> , 2015 , 17, 66	8.3	183	
41	Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds. <i>Biochemical Society Transactions</i> , 2015 , 43, 825-31	5.1	12	
40	Patterning of individual Staphylococcus aureus bacteria onto photogenerated polymeric surface structures. <i>Polymer Chemistry</i> , 2015 , 6, 2677-2684	4.9	12	

39	Selective Biorecognition on Polymer Surfaces: Remarks and Future Trends 2015 , 387-389		1
38	Biorecognition Molecules: Types and Molecular Basis and Development of Specificity 2015 , 45-63		
37	Formation of multigradient porous surfaces for selective bacterial entrapment. <i>Biomacromolecules</i> , 2014 , 15, 3338-48	6.9	19
36	Controlled nanometric fibers of self-assembled designed protein scaffolds. <i>Nanoscale</i> , 2014 , 6, 10982-8	3 7.7	25
35	Multifunctionalization of magnetic nanoparticles for controlled drug release: a general approach. <i>European Journal of Medicinal Chemistry</i> , 2014 , 82, 355-62	6.8	45
34	Study of Co-phthalocyanine films by surface plasmon resonance spectroscopy. <i>Journal of Applied Physics</i> , 2014 , 115, 103106	2.5	3
33	Fabrication of Functional Wrinkled Interfaces from Polymer Blends: Role of the Surface Functionality on the Bacterial Adhesion. <i>Polymers</i> , 2014 , 6, 2845-2861	4.5	11
32	Engineering Iron Oxide Nanoparticles for Clinical Settings. <i>Nanobiomedicine</i> , 2014 , 1, 2	4.8	76
31	Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria 2013 ,		2
30	Nanostructured functional films from engineered repeat proteins. <i>Journal of the Royal Society Interface</i> , 2013 , 10, 20130051	4.1	32
29	Singlet oxygen generation by the genetically encoded tag miniSOG. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9564-7	16.4	107
28	Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion. <i>Biomaterials</i> , 2013 , 34, 1453-60	15.6	42
27	Versatile functional microstructured polystyrene-based platforms for protein patterning and recognition. <i>Biomacromolecules</i> , 2013 , 14, 3147-54	6.9	5
26	Site-specific protein double labeling by expressed protein ligation: applications to repeat proteins. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 273-80	3.9	18
25	3.12 The Folding of Repeat Proteins 2012 , 267-289		
24	Calorimetric study of a series of designed repeat proteins: modular structure and modular folding. <i>Protein Science</i> , 2011 , 20, 336-40	6.3	35
23	Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble. <i>Protein Science</i> , 2011 , 20, 1042-7	6.3	40
22	Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand. <i>FEBS Journal</i> , 2010 , 277, 1058-66	5.7	39

21	Designed proteins to modulate cellular networks. ACS Chemical Biology, 2010, 5, 545-52	4.9	41
20	Interdomain Ca(2+) effects in Escherichia coli alpha-haemolysin: Ca(2+) binding to the C-terminal domain stabilizes both C- and N-terminal domains. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2010 , 1798, 1225-33	3.8	16
19	Screening libraries to identify proteins with desired binding activities using a split-GFP reassembly assay. <i>ACS Chemical Biology</i> , 2010 , 5, 553-62	4.9	42
18	Ligand binding by repeat proteins: natural and designed. <i>Current Opinion in Structural Biology</i> , 2008 , 18, 507-15	8.1	96
17	Mapping the energy landscape of repeat proteins using NMR-detected hydrogen exchange. <i>Journal of Molecular Biology</i> , 2008 , 379, 617-26	6.5	30
16	Non-random-coil behavior as a consequence of extensive PPII structure in the denatured state. <i>Journal of Molecular Biology</i> , 2008 , 382, 203-12	6.5	34
15	Designed TPR modules as novel anticancer agents. ACS Chemical Biology, 2008, 3, 161-6	4.9	87
14	Comparison of the backbone dynamics of a natural and a consensus designed 3-TPR domain. <i>Journal of Biomolecular NMR</i> , 2008 , 41, 169-78	3	7
13	Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2007 , 63, 800-11		83
12	Consensus design as a tool for engineering repeat proteins. <i>Methods in Molecular Biology</i> , 2006 , 340, 151-70	1.4	40
11	Membrane insertion of Escherichia coli alpha-hemolysin is independent from membrane lysis. <i>Journal of Biological Chemistry</i> , 2006 , 281, 5461-7	5.4	27
10	Repeat motions and backbone flexibility in designed proteins with different numbers of identical consensus tetratricopeptide repeats. <i>Biochemistry</i> , 2006 , 45, 12175-83	3.2	20
9	Ligand binding by TPR domains. <i>Protein Science</i> , 2006 , 15, 1193-8	6.3	84
8	A new folding paradigm for repeat proteins. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10188	3 -96 .4	122
7	Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins. Protein Engineering, Design and Selection, 2004 , 17, 399-409	1.9	63
6	A receptor-binding region in Escherichia coli alpha-haemolysin. <i>Journal of Biological Chemistry</i> , 2003 , 278, 19159-63	5.4	40
5	Asp-863 is a key residue for calcium-dependent activity of Escherichia coli RTX toxin alpha-haemolysin. <i>FEBS Letters</i> , 2003 , 546, 271-5	3.8	6
4	His-859 is an essential residue for the activity and pH dependence of Escherichia coli RTX toxin alpha-hemolysin. <i>Journal of Biological Chemistry</i> , 2002 , 277, 23223-9	5.4	12

Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. *Journal of Biological Chemistry*, **2001**, 276, 12513-9

5.4 65

Designing Artificial Fluorescent Proteins: Squaraine-LmrR Biophosphors for High Performance Deep-Red Biohybrid Light-Emitting Diodes. *Advanced Functional Materials*,2111381

15.6 1

Tuning the Optical Properties of Au Nanoclusters by Designed Proteins. Advanced Optical Materials, 2101832 3