
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Inheritance of Sclerotinia Stem Rot Resistance in <i>Brassica napus</i> and Relationship to Cotyledon and Leaf Resistances. Plant Disease, 2022, 106, 127-136.	0.7	4
2	Faba bean gall pathogen Physoderma viciae: new primers reveal its puzzling association with the field pea Ascochyta complex. Plant Disease, 2022, , .	0.7	1
3	IMA Genome - F16. IMA Fungus, 2022, 13, 3.	1.7	4
4	Sequential infections by 32 isolates of. Crop and Pasture Science, 2022, 73, 1367-1384.	0.7	3
5	Evidence for Niche Differentiation in the Environmental Responses of Co-occurring Mucoromycotinian Fine Root Endophytes and Glomeromycotinian Arbuscular Mycorrhizal Fungi. Microbial Ecology, 2021, 81, 864-873.	1.4	17
6	Challenges With Managing Disease Complexes During Application of Different Measures Against Foliar Diseases of Field Pea. Plant Disease, 2021, 105, 616-627.	0.7	7
7	Molecular characterization of disease resistance in <i>Brassica juncea</i> – The current status and the way forward. Plant Pathology, 2021, 70, 13-34.	1.2	18
8	<i>Physoderma</i> , not <i>Olpidium</i> , is the true cause of faba bean gall disease of <i>Vicia faba</i> in Ethiopia. Plant Pathology, 2021, 70, 1180-1194.	1.2	13
9	<i>Phoma medicaginis</i> Isolate Differences Determine Disease Severity and Phytoestrogen Production in Annual <i>Medicago</i> spp Plant Disease, 2021, 105, 2851-2860.	0.7	5
10	Novel Disease Host Resistances in the World Core Collection of Trifolium subterraneum. Plant Disease, 2021, 105, PDIS-09-20-1985.	0.7	2
11	Canola Growth Stage at Time of Infection Determines Magnitude of White Leaf Spot (<i>Neopseudocercosporella capsellae</i>) Impact. Plant Disease, 2021, 105, 1515-1521.	0.7	6
12	Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia. European Journal of Plant Pathology, 2021, 161, 1-23.	0.8	23
13	Management of rice blast (Pyricularia oryzae): implications of alternative hosts. European Journal of Plant Pathology, 2021, 161, 343-355.	0.8	4
14	Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas. Frontiers in Cellular and Infection Microbiology, 2021, 11, 678231.	1.8	2
15	Potato Virus Y Biological Strain Group Y ^D : Hypersensitive Resistance Genes Elicited and Phylogenetic Placement. Plant Disease, 2021, 105, 3600-3609.	0.7	4
16	Temperature and relative humidity shape white leaf spot (<i>Neopseudocercosporella capsellae</i>) epidemic development in rapeseed (<i>Brassica napus</i>). Plant Pathology, 2021, 70, 1936-1944.	1.2	2
17	Comparative analysis of draft genome assemblies developed from whole genome sequences of two Hyaloperonospora brassicae isolate samples differing in field virulence on Brassica napus. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00653.	2.1	3
18	Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 2021, 9, 1988.	1.6	75

#	Article	IF	CITATIONS
19	Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes. Plant Disease, 2020, 104, 904-920.	0.7	27
20	Revisiting Sustainability of Fungicide Seed Treatments for Field Crops. Plant Disease, 2020, 104, 610-623.	0.7	100
21	Virulence variability across the Alternaria spp. population determines incidence and severity of alternaria leaf spot on rapeseed. Plant Pathology, 2020, 69, 506-517.	1.2	14
22	White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae. Frontiers in Cellular and Infection Microbiology, 2020, 10, 588090.	1.8	8
23	Inheritance of leaf resistance to Sclerotinia sclerotiorum in Brassica napus and its genetic correlation with cotyledon resistance. Euphytica, 2020, 216, 1.	0.6	7
24	Understanding Host–Pathogen Interactions in Brassica napus in the Omics Era. Plants, 2020, 9, 1336.	1.6	29
25	A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME Journal, 2020, 14, 3120-3135.	4.4	57
26	Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains. Scientific Reports, 2020, 10, 19752.	1.6	13
27	Virulence/avirulence patterns among Leptosphaeria maculans isolates determines expression of resistance, senescence and yellowing in cotyledons of Brassica napus. European Journal of Plant Pathology, 2020, 156, 1077-1089.	0.8	2
28	Multi-locus phylogeny and pathogenicity of Stemphylium species associated with legumes in Australia. Mycological Progress, 2020, 19, 381-396.	0.5	14
29	Temperature Drives Contrasting Alternaria Leaf Spot Epidemic Development in Canola and Mustard Rape from <i>Alternaria japonica</i> and <i>A. brassicae</i> . Plant Disease, 2020, 104, 1668-1674.	0.7	7
30	Plant genotype and temperature impact simultaneous biotic and abiotic stressâ€related gene expression in Pythium â€infected plants. Plant Pathology, 2020, 69, 655-668.	1.2	5
31	Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus. Euphytica, 2020, 216, 1.	0.6	11
32	Crop Establishment SIMulator: A Qualitative Aggregative Model to Predict the Role of Phytobiomes on Field Crop Establishment. Phytobiomes Journal, 2020, 4, 327-339.	1.4	7
33	Relative host resistance to Alternaria leaf spot in canola and mustard varieties is defined by Alternaria species. Crop and Pasture Science, 2020, 71, 689.	0.7	5
34	Host response of Arabidopsis thaliana ecotypes is determined by Sclerotinia sclerotiorum isolate type. European Journal of Plant Pathology, 2019, 153, 583-597.	0.8	2
35	Detection of First Marker Trait Associations for Resistance Against Sclerotinia sclerotiorum in Brassica juncea–Erucastrum cardaminoides Introgression Lines. Frontiers in Plant Science, 2019, 10, 1015.	1.7	43
36	Effects of a Potato Spindle Tuber Viroid Tomato Strain on the Symptoms, Biomass, and Yields of Classical Indicator and Currently Grown Potato and Tomato Cultivars. Plant Disease, 2019, 103, 3009-3017.	0.7	11

#	Article	IF	CITATIONS
37	Geographic location and year determine virulence, and year determines genetic change, in populations of Neopseudocercosporella capsellae. Plant Pathology, 2019, 68, 1706-1718.	1.2	7
38	Disinfestation of diverse fungal pathogen spores on inert contaminated materials. European Journal of Plant Pathology, 2019, 155, 135-150.	0.8	1
39	Comparative Reaction of Camelina sativa to Sclerotinia sclerotiorum and Leptosphaeria maculans. Plant Disease, 2019, 103, 2884-2892.	0.7	4
40	Optimisation of regeneration parameters improves transformation efficiency of recalcitrant tomato. Plant Cell, Tissue and Organ Culture, 2019, 137, 473-483.	1.2	6
41	Role of foliage component and host age on severity of Alternaria leaf spot (caused by Alternaria) Tj ETQq1 1 0.78 Crop and Pasture Science, 2019, 70, 969.	4314 rgB1 0.7	/Overlock 1 14
42	Molecular and genetic analysis of defensive responses of Brassica juncea – B. fruticulosa introgression lines to Sclerotinia infection. Scientific Reports, 2019, 9, 17089.	1.6	40
43	<i>Zucchini yellow mosaic virus</i> Genomic Sequences from Papua New Guinea: Lack of Genetic Connectivity with Northern Australian or East Timorese Genomes, and New Recombination Findings. Plant Disease, 2019, 103, 1326-1336.	0.7	5
44	Genetic Connectivity Between Papaya Ringspot Virus Genomes from Papua New Guinea and Northern Australia, and New Recombination Insights. Plant Disease, 2019, 103, 737-747.	0.7	11
45	Factors Influencing Rust (<i>Melampsora apocyni</i>) Intensity on Cultivated and Wild <i>Apocynum venetum</i> in Altay Prefecture, China. Phytopathology, 2019, 109, 593-606.	1.1	3
46	Resistances to downy mildew (Hyaloperonospora brassicae) in diverse Brassicaceae offer new disease management opportunities for oilseed and vegetable crucifer industries. European Journal of Plant Pathology, 2019, 153, 915-929.	0.8	16
47	Manipulating the ecosystem enables management of soilborne pathogen complexes in annual legume forage systems. Plant Pathology, 2019, 68, 454-469.	1.2	8
48	Incidence, pathogenicity and diversity of <i>Alternaria</i> spp. associated with alternaria leaf spot of canola (<i>Brassica napus</i>) in Australia. Plant Pathology, 2019, 68, 492-503.	1.2	38
49	Critical factors driving aphanomyces dampingâ€off and root disease in clover revealed and explained using linear and generalized linear models and boosted regression trees. Plant Pathology, 2018, 67, 1374-1387.	1.2	8
50	Pathotypes and phylogenetic variation determine downy mildew epidemics in <i>Brassica</i> spp. in Australia. Plant Pathology, 2018, 67, 1514-1527.	1.2	13
51	New Isolates of <i>Sweet potato feathery mottle virus</i> and <i>Sweet potato virus C</i> : Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes. Plant Disease, 2018, 102, 1899-1914.	0.7	11
52	Comparative colonisation by virulent versus avirulent Pyricularia oryzae on wild Oryza australiensis. European Journal of Plant Pathology, 2018, 151, 927-936.	0.8	1
53	First Complete Genome Sequence of Cucurbit aphid-borne yellows virus from Papua New Guinea. Genome Announcements, 2018, 6, .	0.8	7
54	Temperature and plant age drive downy mildew disease epidemics on oilseed Brassica napus and B. juncea. European Journal of Plant Pathology, 2018, 151, 703-711.	0.8	12

#	Article	IF	CITATIONS
55	Expression of defenceâ€related genes in stems and leaves of resistant and susceptible field pea (<i>Pisum) Tj ETC</i>	2q1_1 0.78	34314 rgBT /(
56	Plant age and ambient temperature: significant drivers for powdery mildew (<i>Erysiphe) Tj ETQq0 0 0 rgBT /Over</i>	rlock 10 T 1.2	f 50 702 Td (
57	<i>Sweet potato feathery mottle virus</i> and <i>Sweet potato virus C</i> from East Timorese and Australian Sweetpotato: Biological and Molecular Properties, and Biosecurity Implications. Plant Disease, 2018, 102, 589-599.	0.7	17
58	Extended survival of <i>Puccinia graminis</i> f. sp. <i>tritici</i> urediniospores: implications for biosecurity and onâ€farm management. Plant Pathology, 2018, 67, 799-809.	1.2	8
59	Inert Materials as Long-Term Carriers and Disseminators of Viable <i>Leptosphaeria maculans</i> Ascospores and Wider Implications for Ascomycete Pathogens. Plant Disease, 2018, 102, 720-726.	0.7	5
60	Crop breeding to break nexus between bee decline/food production?. Global Food Security, 2018, 19, 56-63.	4.0	2
61	Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant and Soil, 2018, 432, 1-28.	1.8	101
62	Agricultural selection and presence–absence variation in spring-type canola germplasm. Crop and Pasture Science, 2018, 69, 55.	0.7	12
63	A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology, 2018, 9, 1226.	1.5	74
64	Tomato CYCLOPS/IPD3 is required for mycorrhizal symbiosis but not tolerance to Fusarium wilt in mycorrhiza-deficient tomato mutant rmc. Mycorrhiza, 2018, 28, 495-507.	1.3	7
65	Infection process of <i>Phoma koolunga</i> on stem and leaf tissue of resistant and susceptible field pea (<i>Pisum sativum</i>). Plant Pathology, 2017, 66, 212-222.	1.2	3
66	Unique infection structures produced by <i>Pseudocercosporella capsellae</i> on oilseed crops <i>Brassica carinata</i> , <i> B.Âjuncea</i> and <i>B.Ânapus</i> in Western Australia. Plant Pathology, 2017, 66, 304-315.	1.2	12

68	Severity of phytophthora root rot and preâ€emergence dampingâ€off in subterranean clover influenced by moisture, temperature, nutrition, soil type, cultivar and their interactions. Plant Pathology, 2017, 66, 1162-1181.	1.2	13
69	Biological and Molecular Properties of a <i>Turnip mosaic virus</i> (TuMV) Strain that Breaks TuMV Resistances in <i>Brassica napus</i> . Plant Disease, 2017, 101, 674-683.	0.7	29
70	Soilborne root disease pathogen complexes drive widespread decline of subterranean clover pastures across diverse climatic zones. Crop and Pasture Science, 2017, 68, 33.	0.7	20
71	Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp.crops. Australasian Plant Pathology, 2017, 46, 137-146.	0.5	12

Races of Magnaporthe oryzae in Australia and genes with resistance to these races revealed through host resistance screening in monogenic lines of Oryza sativa. European Journal of Plant Pathology, 2017, 148, 647-656.

72 New resistances offer opportunity for effective management of the downy mildew (Hyaloperonospora) Tj ETQq0 0 8 rgBT /Overlock 10

#	Article	IF	CITATIONS
73	Longâ€ŧerm viability of the northern anthracnose pathogen, <i>Kabatiella caulivora</i> , facilitates its transportation and spread. Plant Pathology, 2017, 66, 1463-1471.	1.2	4
74	Environmental factors determine severity of Rhizoctonia damping-off and root rot in subterranean clover. Australasian Plant Pathology, 2017, 46, 357-368.	0.5	17
75	Rice varieties with resistance to multiple races of <i>Magnaporthe oryzae</i> offer opportunities to manage rice blast in Australia. Annals of Applied Biology, 2017, 170, 160-169.	1.3	9
76	Cultivation offers effective management of subterranean clover dampingâ€off and root disease. Grass and Forage Science, 2017, 72, 785-793.	1.2	10
77	Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Scientific Reports, 2017, 7, 5904.	1.6	56
78	Reservoir of cultivated rice pathogens in wild rice in Australia. European Journal of Plant Pathology, 2017, 147, 295-311.	0.8	18
79	A rapid and miniaturized system using Alamar blue to assess fungal spore viability: implications for biosecurity. European Journal of Plant Pathology, 2017, 148, 139-150.	0.8	15
80	Azoxystrobin and propiconazole offer significant potential for rice blast (Pyricularia oryzae) management in Australia. European Journal of Plant Pathology, 2017, 148, 247-259.	0.8	18
81	Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. Frontiers in Plant Science, 2017, 8, 1788.	1.7	81
82	Population Structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway. Frontiers in Microbiology, 2017, 8, 490.	1.5	35
83	Modeling Effects of Temperature, Soil, Moisture, Nutrition and Variety As Determinants of Severity of Pythium Damping-Off and Root Disease in Subterranean Clover. Frontiers in Microbiology, 2017, 8, 2223.	1.5	20
84	Virome Characterization of a Collection of S. sclerotiorum from Australia. Frontiers in Microbiology, 2017, 8, 2540.	1.5	106
85	Valuable New Resistances Ensure Improved Management of Sclerotinia Stem Rot (<i>Sclerotinia) Tj ETQq1 1 0.78 2016, 164, 291-299.</i>	34314 rgB1 0.5	7 /Overlock 1 37
86	Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, <i>Pseudocercosporella capsellae</i> , in Western Australia. Plant Pathology, 2016, 65, 205-217.	1.2	25
87	Valuable New Leaf or Inflorescence Resistances Ensure Improved Management of White Rust (<i>Albugo candida</i>) in Mustard (<i>Brassica juncea</i>) Crops. Journal of Phytopathology, 2016, 164, 404-411.	0.5	7
88	Host resistances to <i>Aphanomyces trifolii</i> root rot of subterranean clover: first opportunity to successfully manage this severe pasture disease. Plant Pathology, 2016, 65, 901-913.	1.2	11
89	Programmed cell death pathways induced by early plantâ€virus infection are determined by isolate virulence and stage of infection. Plant Pathology, 2016, 65, 1518-1528.	1.2	12
90	Effects of Temperature on Disease Severity in Plants of Subterranean Clover Infected Singly or in Mixed Infection with <i>Bean yellow mosaic virus</i> and <i>Kabatiella caulivora</i> . Journal of Phytopathology, 2016, 164, 608-619.	0.5	14

#	Article	IF	CITATIONS
91	Cercosporin From <i>Pseudocercosporella capsellae</i> and its Critical Role in White Leaf Spot Development. Plant Disease, 2016, 100, 1521-1531.	0.7	31
92	Cultivar resistance offers the first opportunity for effective management of the emerging powdery mildew (Erysiphe cruciferarum) threat to oilseed brassicas in Australia. Crop and Pasture Science, 2016, 67, 1179.	0.7	15
93	A PCR-based marker closely linked to a 2BS QTL conferring wheat yellow spot resistance for marker-assisted breeding. Crop and Pasture Science, 2016, 67, 719.	0.7	0
94	Pea black spot disease complex on field pea: dissecting the roles of the different pathogens in causing epicotyl and root disease. European Journal of Plant Pathology, 2016, 144, 595-605.	0.8	16
95	New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops. Crop Protection, 2016, 86, 69-76.	1.0	18
96	Strain specificity of Turnip mosaic virus resistance gene TuRBJU 01 in Brassica juncea. European Journal of Plant Pathology, 2016, 145, 209-213.	0.8	16
97	Resistance to Pythium irregulare root and hypocotyl disease in diverse common bean (Phaseolus) Tj ETQq1 1 0.78 and seed traits. European Journal of Plant Pathology, 2016, 146, 147-176.	4314 rgB 0.8	7 /Overlock 12
98	Systemic Hypersensitive Resistance to <i>Turnip mosaic virus</i> in <i>Brassica juncea</i> is Associated With Multiple Defense Responses, Especially Phloem Necrosis and Xylem Occlusion. Plant Disease, 2016, 100, 1261-1270.	0.7	17
99	Deep Sequencing Reveals the Complete Genome Sequence of Sweet potato virus G from East Timor. Genome Announcements, 2016, 4, .	0.8	15
100	Mechanisms of resistance in <i>Brassica carinata</i> , <i> B.Ânapus</i> and <i>B.Âjuncea</i> to <i>Pseudocercosporella capsellae</i> . Plant Pathology, 2016, 65, 888-900.	1.2	15
101	Potato spindle tuber viroid: alternative host reservoirs and strain found in a remote subtropical irrigation area. European Journal of Plant Pathology, 2016, 145, 433-446.	0.8	27
102	Attack modes and defence reactions in pathosystems involvingSclerotinia sclerotiorum,Brassica carinata,B. junceaandB. napus. Annals of Botany, 2016, 117, 79-95.	1.4	42
103	Camalexin Production in <i>Camelina sativa</i> is Independent of Cotyledon Resistance to <i>Sclerotinia sclerotiorum</i> . Plant Disease, 2015, 99, 1544-1549.	0.7	6
104	Host resistance to Sclerotinia stem rot in historic and current Brassica napus and B. juncea varieties: critical management implications. Crop and Pasture Science, 2015, 66, 841.	0.7	22
105	Biological and molecular variation amongst Australian <i>Turnip mosaic virus</i> isolates. Plant Pathology, 2015, 64, 1215-1223.	1.2	19
106	The Successful Control of Clover Scorch Disease (Kabatiella Caulivora) in Australian Subterranean Clover Pastures. Assa, Cssa and Sssa, 2015, , 589-601.	0.6	2
107	Studies on resistance phenotypes to Turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. European Journal of Plant Pathology, 2015, 141, 647-666.	0.8	22
108	Influence of fungicidal seed treatments and soil type on severity ofÂroot disease caused by Rhizoctonia solani AG-8 on wheat. Crop Protection, 2015, 75, 40-45.	1.0	20

#	Article	IF	CITATIONS
109	<i>Potato spindle tuber viroid</i> : Stability on Common Surfaces and Inactivation With Disinfectants. Plant Disease, 2015, 99, 770-775.	0.7	14
110	Virulence differences among Sclerotinia sclerotiorum isolates determines host cotyledon resistance responses in Brassicaceae genotypes. European Journal of Plant Pathology, 2015, 143, 527-541.	0.8	17
111	Relative Host Resistance to Black Spot Disease in Field Pea (<i>Pisum sativum</i>) is Determined by Individual Pathogens. Plant Disease, 2015, 99, 580-587.	0.7	13
112	New host resistances in Brassica napus and Brassica juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides. Crop Protection, 2015, 78, 127-130.	1.0	25
113	Effect of Timing and Duration of Soil Saturation on Soilborne <i>Pythium</i> Diseases of Common Bean (<i>Phaseolus vulgaris</i>). Plant Disease, 2015, 99, 112-118.	0.7	18
114	Temperature adaptation in isolates of <i>Sclerotinia sclerotiorum</i> affects their ability to infect <i>Brassica carinata</i> . Plant Pathology, 2015, 64, 1140-1148.	1.2	33
115	Calcium Oxalate Crystals: An Integral Component of the Sclerotinia sclerotiorum/Brassica carinata Pathosystem. PLoS ONE, 2015, 10, e0122362.	1.1	26
116	Resistance in field pea (Pisum sativum) to the black spot disease complex in Western Australia. European Journal of Plant Pathology, 2014, 140, 597-605.	0.8	7
117	Temporal and Spatial Changes in the Pea Black Spot Disease Complex in Western Australia. Plant Disease, 2014, 98, 790-796.	0.7	18
118	Seedling Resistance to <i>Sclerotinia sclerotiorum</i> as Expressed Across Diverse Cruciferous Species. Plant Disease, 2014, 98, 184-190.	0.7	50
119	Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica, 2014, 197, 47-59.	0.6	54
120	High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops. European Journal of Plant Pathology, 2014, 138, 873-890.	0.8	28
121	Species of <i>Pythium</i> Associated with Seedling Root and Hypocotyl Disease on Common Bean (<i>Phaseolus vulgaris</i>) in Western Australia. Plant Disease, 2014, 98, 1241-1247.	0.7	26
122	Preliminary studies on resistance phenotypes to Turnip mosaic virus in Brassica napus and B. carinata from different continents and effects of temperature on their expression. European Journal of Plant Pathology, 2014, 139, 687-706.	0.8	19
123	Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence. Journal of Proteomics, 2014, 108, 223-237.	1.2	14
124	Genetic improvement of subterranean clover (Trifolium subterraneum L.). 2. Breeding for disease and pest resistance. Crop and Pasture Science, 2014, 65, 1207.	0.7	33
125	Opportunities and challenges for improved management of foliar pathogens in annual clover pastures across southern Australia. Crop and Pasture Science, 2014, 65, 1249.	0.7	13

126 First Report of Alternaria Leaf Spot Caused by <i>Alternaria tenuissima</i> on Blueberry (<i>Vaccinium) Tj ETQq0 0.0 rgBT /Oyerlock 10

#	Article	IF	CITATIONS
127	First Report of <i>Phoma glomerata</i> Associated with the Ascochyta Blight Complex on Field Pea (<i>Pisum sativum</i>) in Australia. Plant Disease, 2014, 98, 427-427.	0.7	32
128	Rathayibacter toxicus. , 2014, , 775-786.		1
129	Temporal Patterns of Ascospore Release in Leptosphaeria maculans Vary Depending on Geographic Region and Time of Observation. Microbial Ecology, 2013, 65, 584-592.	1.4	20
130	New sources of resistance to Sclerotinia sclerotiorum for crucifer crops. Field Crops Research, 2013, 154, 40-52.	2.3	70
131	Didymella pinodes and its management in field pea: Challenges and opportunities. Field Crops Research, 2013, 148, 61-77.	2.3	51
132	Comparative Proteome Analysis of the Strawberry- <i>Fusarium oxysporum</i> f. sp. <i>fragariae</i> Pathosystem Reveals Early Activation of Defense Responses as a Crucial Determinant of Host Resistance. Journal of Proteome Research, 2013, 12, 1772-1788.	1.8	28
133	Wide Variation in Virulence and Genetic Diversity of Binucleate Rhizoctonia Isolates Associated with Root Rot of Strawberry in Western Australia. PLoS ONE, 2013, 8, e55877.	1.1	43
134	First Report of Powdery Mildew Caused by <i>Erysiphe cruciferarum</i> on <i>Brassica campestris</i> var <i>. pekinensis, B. carinata, Eruca sativa, E. vesicaria</i> in Australia and on <i>B. rapa</i> and <i>B. oleracea</i> var. <i>capitata</i> in Western Australia. Plant Disease, 2013, 97, 1256-1256.	0.7	9
135	Differentially Expressed Proteins and Associated Histological and Disease Progression Changes in Cotyledon Tissue of a Resistant and Susceptible Genotype of Brassica napus Infected with Sclerotinia sclerotiorum. PLoS ONE, 2013, 8, e65205.	1.1	52
136	Reduced severity and impact of Fusarium wilt on strawberry by manipulation of soil pH, soil organic amendments and crop rotation. European Journal of Plant Pathology, 2012, 134, 619-629.	0.8	64
137	Comparative root colonisation of strawberry cultivars Camarosa and Festival by Fusarium oxysporum f. sp. fragariae. Plant and Soil, 2012, 358, 75-89.	1.8	36
138	Amelioration of root disease of subterranean clover (Trifolium subterraneum) by mineral nutrients. Crop and Pasture Science, 2012, 63, 672.	0.7	14
139	Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia. Mycotoxin Research, 2012, 28, 89-96.	1.3	14
140	Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios – Case study with oilseed Brassicas. Field Crops Research, 2012, 127, 225-240.	2.3	73
141	Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crops Research, 2012, 127, 248-258.	2.3	59
142	Mobile traps are better than stationary traps for surveillance of airborne fungal spores. Crop Protection, 2012, 36, 23-30.	1.0	22
143	Seasonal and Diurnal Patterns of Spore Release Can Significantly Affect the Proportion of Spores Expected to Undergo Long-Distance Dispersal. Microbial Ecology, 2012, 63, 578-585.	1.4	45
144	First Report of Sarocladium oryzae Causing Sheath Rot on Rice (Oryza sativa) in Western Australia. Plant Disease, 2012, 96, 1382-1382.	0.7	11

#	Article	IF	CITATIONS
145	First Report of Rice Blast (<i>Magnaporthe oryzae</i>) on Rice (<i>Oryza sativa</i>) in Western Australia. Plant Disease, 2012, 96, 1228-1228.	0.7	9
146	First Report of Black Spot Caused by <i>Boeremia exigua</i> var. <i>exigua</i> on Field Pea in Australia. Plant Disease, 2012, 96, 148-148.	0.7	21
147	First Report of <i>Phoma herbarum</i> on Tedera (<i>Bituminaria bituminosa</i> var.) Tj ETQq1 1 0.784314 rgBT	/Overlock	10 Tf 50 66
148	Toxigenicity of enniatins from Western Australian Fusarium species to brine shrimp (Artemia) Tj ETQq0 0 0 rgBT /0	Overlock 1 0.8	0 Tf 50 622
149	Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Scientia Horticulturae, 2011, 131, 39-48.	1.7	56
150	Salinity drives host reaction in Phaseolus vulgaris (common bean) to Macrophomina phaseolina. Functional Plant Biology, 2011, 38, 984.	1.1	28
151	Damage to roots of <i>Trifolium subterraneum</i> L. (subterranean clover), failure of seedlings to establish and the presence of root pathogens during autumn–winter. Grass and Forage Science, 2011, 66, 585-605.	1.2	30
152	Can mechanistically parameterised, anisotropic dispersal kernels provide a reliable estimate of wind-assisted dispersal?. Ecological Modelling, 2011, 222, 1673-1682.	1.2	18
153	Pre-inoculation with Hyaloperonospora parasitica reduces incubation period and increases severity of disease caused by Albugo candida in a Brassica juncea variety resistant to downy mildew. Journal of General Plant Pathology, 2011, 77, 101-106.	0.6	21
154	Mycotoxins produced by Fusarium species associated with annual legume pastures and â€~sheep feed refusal disorders' in Western Australia. Mycotoxin Research, 2011, 27, 123-135.	1.3	36
155	Severity of crown and root diseases of strawberry and associated fungal and oomycete pathogens in Western Australia. Australasian Plant Pathology, 2011, 40, 109-119.	0.5	56
156	A meta-analysis of severity and yield loss from ascochyta blight on field pea in Western Australia. Australasian Plant Pathology, 2011, 40, 591-600.	0.5	14
157	Impact of climate change in relation to ascochyta blight on field pea in Western Australia. Australasian Plant Pathology, 2011, 40, 397-406.	0.5	15
158	Host Range and Phylogenetic Relationships of <i>Albugo candida</i> from Cruciferous Hosts in Western Australia, with Special Reference to <i>Brassica juncea</i> . Plant Disease, 2011, 95, 712-718.	0.7	25
159	Proteome analysis of the Albugo candida–Brassica juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. Journal of Experimental Botany, 2011, 62, 1285-1298.	2.4	39
160	First Report of <i>Phoma herbarum</i> on Field Pea (<i>Pisum sativum</i>) in Australia. Plant Disease, 2011, 95, 1590-1590.	0.7	30
161	Molecular Genetic Characterization of Olpidium virulentus Isolates Associated with Big-Vein Diseased Lettuce Plants. Plant Disease, 2010, 94, 563-569.	0.7	29
162	Scarification and Environmental Factors that Enhance Carpogenic Germination of Sclerotia of <i>Sclerotinia sclerotiorum</i> . Plant Disease, 2010, 94, 1041-1047.	0.7	19

#	Article	IF	CITATIONS
163	Infection Processes and Involvement of Defense-Related Genes in the Expression of Resistance in Cultivars of Subterranean Clover (<i>Trifolium subterraneum</i>) to <i>Phytophthora clandestina</i> . Phytopathology, 2010, 100, 551-559.	1.1	9
164	Comparison of the coat protein genes of Lettuce big-vein associated virus isolates from Australia with those of isolates from other continents. Archives of Virology, 2010, 155, 765-770.	0.9	10
165	Comparison of the coat protein genes of Mirafiori lettuce big-vein virus isolates from Australia with those of isolates from other continents. Archives of Virology, 2010, 155, 1519-1522.	0.9	10
166	Pathogenicity of morphologically different isolates of Sclerotinia sclerotiorum with Brassica napus and B. juncea genotypes. European Journal of Plant Pathology, 2010, 126, 305-315.	0.8	60
167	Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Diversity and Distributions, 2010, 16, 288-299.	1.9	33
168	The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus. Annals of Botany, 2010, 106, 897-908.	1.4	84
169	High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Research, 2010, 117, 51-58.	2.3	83
170	Resistance to clover scorch disease (Kabatiella caulivora) among accessions of purple clover (Trifolium purpureum) and its relationship to the eco-geography of collection sites. Crop and Pasture Science, 2010, 61, 44.	0.7	5
171	Taxonomic and pathogenic characteristics of a new species Aphanomyces trifolii causing root rot of subterranean clover (Trifolium subterraneum) in Western Australia. Crop and Pasture Science, 2010, 61, 708.	0.7	14
172	A new leaf blight disease of Trifolium dasyurum caused by Botrytis fabae. European Journal of Plant Pathology, 2009, 123, 99-103.	0.8	7
173	Dual control of avirulence in <i>Leptosphaeria maculans</i> towards a <i>Brassica napus</i> cultivar with â€~ <i>sylvestris</i> â€derived' resistance suggests involvement of two resistance genes. Plant Pathology, 2009, 58, 305-313.	1.2	73
174	The <i>Leptosphaeria maculans – Leptosphaeria biglobosa</i> species complex in the American continent. Plant Pathology, 2009, 58, 1044-1058.	1.2	77
175	Responses of genotypes from species of <i>Trifolium</i> , <i>Ornithopus</i> , <i>Biserrula</i> and <i>Hedysarum</i> to a highly virulent race of <i>Phytophthora clandestina</i> and new sources of resistance. Annals of Applied Biology, 2009, 155, 259-265.	1.3	5
176	New sources of resistance to Sclerotinia stem rot caused by <i>Sclerotinia sclerotiorum</i> in Chinese and Australian <i>Brassica napus</i> and <i>B. juncea</i> germplasm screened under Western Australian conditions. Australasian Plant Pathology, 2009, 38, 149.	0.5	67
177	Resistance to race 2 and cross-resistance to race 1 of <i>Kabatiella caulivora</i> in <i>Trifolium subterraneum</i> and <i>T. purpureum</i> . Australasian Plant Pathology, 2009, 38, 284.	0.5	22
178	Molecular variation among isolates belonging to eight races of <i>Phytophthora clandestina</i> . Australasian Plant Pathology, 2009, 38, 608.	0.5	6
179	Complete resistance to leaf and staghead disease in Australian <i>Brassica juncea</i> germplasm exposed to infection by <i>Albugo candida</i> (white rust). Australasian Plant Pathology, 2009, 38, 63.	0.5	5
180	Severity of root rot in mature subterranean clover and associated fungal pathogens in the wheatbelt of Western Australia. Crop and Pasture Science, 2009, 60, 43.	0.7	24

#	Article	IF	CITATIONS
181	Cross-pathogenicity of Rhizoctonia solani strains on pasture legumes in pasture-crop rotations. Plant and Soil, 2008, 302, 203-211.	1.8	15
182	Cytological responses in the hypersensitive reaction in cotyledon and stem tissues of Brassica napus after infection by Leptosphaeria maculans. Journal of General Plant Pathology, 2008, 74, 120-124.	0.6	13
183	Cotyledon assay as a rapid and reliable method of screening for resistance against <i>Sclerotinia sclerotiorum</i> in <i>Brassica napus</i> genotypes. Australasian Plant Pathology, 2008, 37, 106.	0.5	57
184	Response of <i>Brassica napus</i> and <i>B. juncea</i> germplasm from Australia, China and India to Australian populations of <i>Leptosphaeria maculans</i> . Australasian Plant Pathology, 2008, 37, 162.	0.5	16
185	Pathogenic behaviour of strains of <i>Albugo candida</i> from <i>Brassica juncea</i> (Indian mustard) and <i>Raphanus raphanistrum</i> (wild radish) in Western Australia. Australasian Plant Pathology, 2008, 37, 353.	0.5	17
186	Australian anguinids: their agricultural impact and control. Australasian Plant Pathology, 2008, 37, 289.	0.5	8
187	Inhibition of the pre- and postinfection processes of <i>Plasmopara viticola</i> on <i>Vitis vinifera</i> leaves by one protectant and four systemic fungicides. Australasian Plant Pathology, 2008, 37, 335.	0.5	5
188	Co-occurrence of anAphanomycessp. andPhytopththora clandestinain subterranean clover pastures in the high rainfall areas of the lower south-west of Western Australia. Australasian Plant Pathology, 2008, 37, 74.	0.5	16
189	A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 2008, 72, 80-86.	1.3	441
190	Both incidence and severity of white rust disease reflect host resistance in Brassica juncea germplasm from Australia, China and India. Field Crops Research, 2008, 106, 1-8.	2.3	33
191	Occurrence of a New Subclade of <i>Leptosphaeria biglobosa</i> in Western Australia. Phytopathology, 2008, 98, 321-329.	1.1	55
192	Stabilization of Resistance to <i>Leptosphaeria maculans</i> in <i>Brassica napus–B. juncea</i> Recombinant Lines and Its Introgression into Spring-Type <i>Brassica napus</i> . Plant Disease, 2008, 92, 1208-1214.	0.7	32
193	Resistance to race 1 of Kabatiella caulivora in subterranean clover (Trifolium subterraneum L.) cultivars and breeding lines. Australian Journal of Agricultural Research, 2008, 59, 561.	1.5	7
194	Evaluation of Australian Brassica napus genotypes for resistance to the downy mildew pathogen, Hyaloperonospora parasitica. Australian Journal of Agricultural Research, 2008, 59, 1030.	1.5	12
195	First Report of Powdery Mildew Caused by <i>Erysiphe cruciferarum</i> on <i>Brassica juncea</i> in Australia. Plant Disease, 2008, 92, 650-650.	0.7	11
196	Epidemiology of Blackleg (Leptosphaeria maculans) of Canola (Brassica napus) in Relation to Maturation of Pseudothecia and Discharge of Ascospores in Western Australia. Phytopathology, 2007, 97, 1011-1021.	1.1	22
197	Coolamon subterranean clover (Trifolium subterraneum L. var. subterraneum). Australian Journal of Experimental Agriculture, 2007, 47, 223.	1.0	7
198	Izmir subterranean clover (Trifolium subterraneum L. var. subterraneum). Australian Journal of Experimental Agriculture, 2007, 47, 226.	1.0	5

#	Article	IF	CITATIONS
199	Resistance in Annual Medicago spp. to Phoma medicaginis and Leptosphaerulina trifolii and Its Relationship to Induced Production of a Phytoestrogen. Plant Disease, 2007, 91, 239-244.	0.7	26
200	Resistance in oilseed rape (Brassica napus) and Indian mustard (Brassica juncea) to a mixture of Pseudocercosporella capsellae isolates from Western Australia. Field Crops Research, 2007, 101, 37-43.	2.3	24
201	New annual and short-lived perennial pasture legumes for Australian agriculture—15 years of revolution. Field Crops Research, 2007, 104, 10-23.	2.3	170
202	The importance of the type and time of inoculation and assessment in the determination of resistance in Brassia napus and B. juncea to Sclerotinia sclerotiorum. Australian Journal of Agricultural Research, 2007, 58, 1198.	1.5	64
203	Genome structure impacts molecular evolution at the <i>AvrLm1</i> avirulence locus of the plant pathogen <i>Leptosphaeria maculans</i> . Environmental Microbiology, 2007, 9, 2978-2992.	1.8	101
204	Two weather-based models for predicting the onset of seasonal release of ascospores of Leptosphaeria maculans or L. biglobosa. Plant Pathology, 2007, 56, 412-423.	1.2	38
205	Soilborne ascospores and pycnidiospores ofLeptosphaeria maculanscan contribute significantly to blackleg disease epidemiology in oilseed rape (Brassica napus) in Western Australia. Australasian Plant Pathology, 2007, 36, 439.	0.5	19
206	The expression of resistance in subterranean clover (Trifolium subterraneum) to races 1 and 2 ofKabatiella caulivorais affected by inoculum pressure but not by combinations of the two races. Australasian Plant Pathology, 2007, 36, 318.	0.5	6
207	Breaching by a new strain of Leptosphaeria maculans of anatomical barriers in cotyledons of Brassica napus cultivar Surpass 400 with resistance based on a single dominant gene. Journal of General Plant Pathology, 2007, 73, 297-303.	0.6	9
208	Expression and relationships of resistance to white rust (Albugo candida) at cotyledonary, seedling, and flowering stages in Brassica juncea germplasm from Australia, China, and India. Australian Journal of Agricultural Research, 2007, 58, 259.	1.5	26
209	Improved resistance management for durable disease control: A case study of phoma stem canker of oilseed rape (Brassica napus). , 2006, , 91-106.		2
210	Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Australian Journal of Agricultural Research, 2006, 57, 1131.	1.5	72
211	Concomitant inoculation of an avirulent strain of Leptosphaeria maculans prevents break-down of a single dominant gene-based resistance in Brassica napus cv. Surpass 400 by a virulent strain. Field Crops Research, 2006, 95, 206-211.	2.3	26
212	Relationship between Brassica napus seedling and adult plant responses to Leptosphaeria maculans is determined by plant growth stage at inoculation and temperature regime. Field Crops Research, 2006, 96, 428-437.	2.3	29
213	Field Application of Dilophospora alopecuri to Manage Annual Ryegrass Toxicity Caused by Rathayibacter toxicus. Plant Disease, 2006, 90, 229-232.	0.7	4
214	World-Wide Importance of Phoma Stem Canker (Leptosphaeria maculans and L. biglobosa) on Oilseed Rape (Brassica napus). European Journal of Plant Pathology, 2006, 114, 3-15.	0.8	387
215	Improved Resistance Management for Durable Disease Control: A Case Study of Phoma Stem Canker of Oilseed Rape (Brassica napus). European Journal of Plant Pathology, 2006, 114, 91-106.	0.8	66
216	Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica, 2006, 147, 223-253.	0.6	154

#	Article	IF	CITATIONS
217	Occurrence ofPhytophthora clandestinaraces across rainfall zones in south-west Western Australia. Australasian Plant Pathology, 2006, 35, 85.	0.5	15
218	The association of necrotrophic fungal pathogens and plant parasitic nematodes with the loss of productivity of annual medic-based pastures in Australia and options for their management. Australasian Plant Pathology, 2006, 35, 691.	0.5	32
219	Annual Medicago: From a Model Crop Challenged by a Spectrum of Necrotrophic Pathogens to a Model Plant to Explore the Nature of Disease Resistance. Annals of Botany, 2006, 98, 1117-1128.	1.4	70
220	World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). , 2006, , 3-15.		26
221	Enhanced Pathogenicity of Leptosphaeria maculans Pycnidiospores from Paired Co-inoculation of Brassica napus Cotyledons with Ascospores. Annals of Botany, 2006, 97, 1151-1156.	1.4	13
222	Urana subterranean clover (Trifolium subterraneum L. var. subterraneum). Australian Journal of Experimental Agriculture, 2006, 46, 1105.	1.0	8
223	Napier subterranean clover (Trifolium subterraneum L. var. yanninicum). Australian Journal of Experimental Agriculture, 2006, 46, 1109.	1.0	4
224	Association of Fusarium species, with potential for mycotoxicosis, on pods of annual Medicago in Western Australia. Australian Journal of Agricultural Research, 2005, 56, 279.	1.5	9
225	New sources of resistance in Trifolium subterraneum L. to root rot caused by two races of Phytophthora clandestina Taylor, Pascoe and Greenhalgh. Australian Journal of Agricultural Research, 2005, 56, 271.	1.5	14
226	New sources of resistance in Trifolium subterraneum to rust (Uromyces trifolii-repentis). Australian Journal of Experimental Agriculture, 2005, 45, 1163.	1.0	6
227	Cylindrocarpon didymum— a root pathogen of subterranean clover in the lower south-west of Western Australia. Australasian Plant Pathology, 2005, 34, 111.	0.5	12
228	New sources of resistance identified inTrifolium subterraneumbreeding lines and cultivars to root rot caused byFusarium avenaceumandPythium irregulareand their relationship to seedling survival. Australasian Plant Pathology, 2005, 34, 237.	0.5	27
229	Field performance of subterranean clover germplasm in relation to severity of Cercospora disease. Australasian Plant Pathology, 2005, 34, 197.	0.5	19
230	Characterization of Phytophthora clandestina races on Trifolium subterraneum in Western Australia. European Journal of Plant Pathology, 2005, 113, 267-274.	0.8	24
231	Genetic basis for and inheritance of resistance to Race 1 and Race 2 of Kabatiella caulivora in Trifolium subterraneum ssp. subterraneum and ssp. yanninicum. Euphytica, 2005, 144, 237-246.	0.6	7
232	Analysis of Leptosphaeria maculans Race Structure in a Worldwide Collection of Isolates. Phytopathology, 2005, 95, 1061-1071.	1.1	147
233	Recurring Challenges from a Necrotrophic Fungal Plant Pathogen: a Case Study with Leptosphaeria maculans (Causal Agent of Blackleg Disease in Brassicas) in Western Australia. Annals of Botany, 2005, 96, 363-377.	1.4	48
234	Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crops Research, 2005, 91, 185-198.	2.3	69

#	Article	IF	CITATIONS
235	New Trifolium subterraneum genotypes identified with resistance to race 2 of Kabatiella caulivora and cross-resistance to fungal root rot pathogens. Australian Journal of Agricultural Research, 2005, 56, 1111.	1.5	15
236	First Report of an Alternaria Leaf Spot Caused by Alternaria brassicae on Crambe abyssinicia in Australia. Plant Disease, 2005, 89, 430-430.	0.7	11
237	First Report of White Leaf Spot Caused by Pseudocercosporella capsellae on Brassica juncea in Australia. Plant Disease, 2005, 89, 1131-1131.	0.7	16
238	Germination and invasion by ascospores and pycnidiospores of Leptosphaeria maculans on spring-type Brassica napus canola varieties with varying susceptibility to blackleg. Journal of General Plant Pathology, 2004, 70, 261-269.	0.6	44
239	Establishing the relationship of ascospore loads with blackleg (Leptosphaeria maculans) severity on canola (Brassica napus). Australian Journal of Agricultural Research, 2004, 55, 849.	1.5	21
240	Time of sowing and fungicides affect blackleg (Leptosphaeria maculans) severity and yield in canola. Australian Journal of Experimental Agriculture, 2004, 44, 1205.	1.0	14
241	Chemical manipulation of Leptosphaeria maculans (blackleg disease) pseudothecial development and timing of ascospore discharge from canola (Brassica napus) residues. Australian Journal of Agricultural Research, 2003, 54, 837.	1.5	19
242	Blackleg Sporacle: A Model for Predicting Onset of Pseudothecia Maturity and Seasonal Ascospore Showers in Relation to Blackleg of Canola. Phytopathology, 2003, 93, 1073-1081.	1.1	71
243	Variability within Kabatiella caulivora Race 1 and Race 2 revealed by cultural and molecular analyses. Australian Journal of Agricultural Research, 2003, 54, 77.	1.5	8
244	Breakdown of a Brassica rapa subsp. sylvestris Single Dominant Blackleg Resistance Gene in B. napus Rapeseed by Leptosphaeria maculans Field Isolates in Australia. Plant Disease, 2003, 87, 752-752.	0.7	98
245	Efficacy of Impact® to manage blackleg (Leptosphaeria maculans) in canola. Australian Journal of Agricultural Research, 2002, 53, 311.	1.5	21
246	Differences in symptom development in subterranean clover infected with Kabatiella caulivora Race 1 and Race 2 are related to host resistance. Australian Journal of Agricultural Research, 2002, 53, 305.	1.5	8
247	Reaction of a range of Brassica species under Australian conditions to the fungus, Leptosphaeria maculans, the causal agent of blackleg. Australian Journal of Experimental Agriculture, 2002, 42, 587.	1.0	32
248	Infection of Subterranean Clover (Trifolium subterraneum) by Kabatiella caulivora. Journal of Phytopathology, 2001, 149, 699-705.	0.5	9
249	Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathology, 2001, 50, 10-27.	1.2	374
250	Prevalence of blackleg (Leptosphaeria maculans) on canola (Brassica napus) in Western Australia. Australian Journal of Experimental Agriculture, 2001, 41, 71.	1.0	40
251	The occurrence of root-infecting fungi and parasitic nematodes in annual Medicago spp. in Western Australian pastures. Australian Journal of Agricultural Research, 2000, 51, 435.	1.5	19
252	Characterization and Pathogenicity of Rhizoctonia Species on Canola. Plant Disease, 1999, 83, 714-721.	0.7	58

#	Article	IF	CITATIONS
253	Relationship of rainfall, cultural practices, soil and plant nutrients, and seedling survival with root disease and parasitic nematode numbers in annual Medicago spp. Pastures. Australian Journal of Agricultural Research, 1999, 50, 977.	1.5	15
254	Potential impact of climate change on plant diseases of economic significance to Australia. Australasian Plant Pathology, 1998, 27, 15.	0.5	123
255	Breakdown in resistance of subterranean clovers to clover scorch disease (Kabatiella caulivora). Australian Journal of Agricultural Research, 1995, 46, 645.	1.5	23
256	Relative resistance, associated yield losses and phyto-oestrogen production from fungal foliar diseases in new and old annual Medicago cultivars. Australian Journal of Agricultural Research, 1995, 46, 441.	1.5	17
257	Resistance in annual Medicago species to Phoma medicaginis and Leptosphaerulina trifolii under field conditions. Australian Journal of Experimental Agriculture, 1995, 35, 209.	1.0	16
258	Resistance and associated yield losses from rust (Uromyces trifolii-repentis Liro) in midseason cultivars of Trifolium subterraneum L. var. subterraneum L. and var. yanninicum Katzn. et Morley. Australian Journal of Experimental Agriculture, 1995, 35, 73.	1.0	8
259	Field resistance in Trifolium subterraneum to Uromyces trifolii-repentis and Cercospora zebrina. Australian Journal of Experimental Agriculture, 1994, 34, 1131.	1.0	11
260	Interactions betweenFusarium oxysporumandMeloidogyne arenariaas root pathogens of subterranean clover affected by soil sterilisation and inoculum substrate. New Zealand Journal of Agricultural Research, 1992, 35, 83-91.	0.9	7
261	Effect of soil environment on infection of subterranean clover by Meloidogyne arenaria. Australian Journal of Agricultural Research, 1992, 43, 87.	1.5	6
262	Susceptibility of subterranean clover varieties to powdery mildew under controlled environment and field conditions. Australian Journal of Experimental Agriculture, 1991, 31, 81.	1.0	5
263	Herbage and seed yield losses in six varieties of subterranean clover from rust (Uromyces) Tj ETQq1 1 0.784314	rgBT/Ovei	logk 10 Tf 5
264	Response of subterranean clover varieties to Cercospora disease under a controlled environment and in the field. Australian Journal of Experimental Agriculture, 1991, 31, 333.	1.0	7
265	Susceptibility of subterranean clover varieties to rust under controlled environment and field conditions. Australian Journal of Experimental Agriculture, 1991, 31, 77.	1.0	9
266	Relationship between Phoma black stem severity and herbage and seed yield and coumestrol content in three Medicago polymorpha var. brevispina cultivars. Australian Journal of Agricultural Research, 1991, 42, 409.	1.5	17
267	Effect of clover-free rotations upon the severity of root rot and yield in regenerating subterranean clover pastures. Australian Journal of Agricultural Research, 1991, 42, 1195.	1.5	11
268	Effect of Kabatiella caulivora isolates and host growth stage on symptom expression and resistance in Trifolium subterraneum. Australian Journal of Experimental Agriculture, 1991, 31, 63.	1.0	13
269	Effects of temperature and humidity on diseases caused by Phoma medicaginis and Leptosphaerulina trifolixs in lucerne (Medicago sativa). Plant Pathology, 1991, 40, 296-301.	1.2	20
270	The Effect of Aldicarb and Benomyl on Root-Knot Nematode and Root Rot in Subterranean Clover Australasian Plant Pathology, 1991, 20, 130.	0.5	4

#	Article	IF	CITATIONS
271	Effect of Placement and Sequence of Inoculation with Fusarium oxysporum on its Interaction with Meloidogyne arenaria on Subterranean Clover. Journal of Phytopathology, 1991, 132, 273-286.	O.5	5
272	Hyperthermia and death in feedlot cattle associated with the ingestion of Claviceps purpurea. Australian Veterinary Journal, 1991, 68, 121-121.	0.5	14
273	Resistance in annual Medicago species to Phoma medicaginis under controlled environment and field conditions. Australian Journal of Experimental Agriculture, 1990, 30, 209.	1.0	14
274	Strategies for control of Phoma black stem in annual Medicago species. Australian Journal of Experimental Agriculture, 1989, 29, 635.	1.0	14
275	Association ofMeloidogyne arenariawith root rot of subterranean clover in Western Australia. New Zealand Journal of Crop and Horticultural Science, 1988, 16, 91-96.	0.2	7
276	Effects of temperature and humidity on disease caused by Phoma medicaginis, resistance in some Medicago cultivars and the incidence of seed-borne inoculum. Australian Journal of Experimental Agriculture, 1987, 27, 851.	1.0	17
277	Seasonal fluctuations in concentration of airborne conidia of Cercospora zebrina and incidence of Cercospora disease in subterranean clover. Transactions of the British Mycological Society, 1987, 88, 280-283.	0.6	3
278	Evaluation of fungicides for control of Cercospora zebrina on subterranean clover. Australian Journal of Experimental Agriculture, 1987, 27, 107.	1.0	7
279	Effects of soil pasteurization on root rot, seedling survival and plant dry weight of subterranean clover inoculated with six fungal root pathogens. Australian Journal of Agricultural Research, 1987, 38, 317.	1.5	23
280	Fungicidal drenches for control of root rot in subterranean clover. Plant and Soil, 1987, 101, 151-157.	1.8	19
281	Effects of Three Foliar Diseases on Biomass and Seed Yield for 11 Cultivars of Subterranean Clover. Plant Disease, 1987, 71, 350.	0.7	19
282	Influence of soil temperature, moisture and other fungal root pathogens on pathogenicity of Phytophthora clandestina to subterranean clover. Transactions of the British Mycological Society, 1986, 86, 479-482.	0.6	28
283	Influence of environmental factors on the growth and survival of <i>Phytophthora clandestina</i> . Canadian Journal of Microbiology, 1986, 32, 553-556.	0.8	7
284	Effect of season, trash and fungicides on fungi associated with subterranean clover. Australian Journal of Experimental Agriculture, 1986, 26, 431.	1.0	4
285	Response of subterranean clover cultivars to root rot fungi. Annals of Applied Biology, 1986, 109, 259-267.	1.3	18
286	Soil-Behaviour of Phytophthora clandestina. Journal of Phytopathology, 1986, 116, 67-73.	0.5	11
287	Inter-relationship between shoot weight, severity of root rot and survival rate of subterranean clover inoculated with certain pathogenic fungi. Plant and Soil, 1986, 96, 141-143.	1.8	12
288	Behavior of Phytophthora clandestina propagules at a field site in Western Australia. Soil Research, 1986, 24, 485.	0.6	11

#	Article	IF	CITATIONS
289	Fungi associated with root rot of subterranean clover in Western Australia. Australian Journal of Experimental Agriculture, 1985, 25, 574.	1.0	43
290	Survey of fungi associated with subterranean clover leaves and petioles in Western Australia. Plant Pathology, 1985, 34, 49-53.	1.2	10
291	Inter-Relationships Between Cercospora Zebrina and Kabatiella Caulivora on Subterranean Clover Australasian Plant Pathology, 1985, 14, 1.	0.5	3
292	Pathogenicity of Rhizoctonia spp. associated with root rots of subterranean clover. Transactions of the British Mycological Society, 1985, 85, 156-158.	0.6	26
293	Infection studies with Cercospora zebrina on pasture legumes in Western Australia. Australian Journal of Experimental Agriculture, 1985, 25, 850.	1.0	15
294	Effects of soil temperature and moisture on the pathogenicity of fungi associated with root rot of subterranean clover. Australian Journal of Agricultural Research, 1984, 35, 675.	1.5	78
295	Subterranean Clover Foliage Fungi as Root Pathogens Australasian Plant Pathology, 1984, 13, 38.	0.5	9
296	Effects of Spray-Seed on the Growth of Subterranean Clover and Its Susceptibility to Root Rot Fungi Australasian Plant Pathology, 1984, 13, 40.	0.5	1
297	Seed Treatments for Control of Subterranean Clover Root Rot Australasian Plant Pathology, 1984, 13, 43.	0.5	7
298	Effects of cultivation and cultural practice on root rot of subterranean clover. Australian Journal of Experimental Agriculture, 1984, 24, 550.	1.0	39
299	Rhizoctonia Root Rot of White Clover Australasian Plant Pathology, 1983, 12, 13.	0.5	13
300	Evaluation of Methods of Seed Pickle Application for Control of Loose Smut (Ustilago Nuda) in Barley Australasian Plant Pathology, 1981, 10, 42.	0.5	2
301	Pseudocercosporella Capsellae and Myrothecium Verrucaria on Rapeseed in Western Australia Australasian Plant Pathology, 1981, 10, 43.	0.5	17
302	Effects of Sowing Date and Oospore Seed Contamination Upon Subsequent Crop Incidence of White Rust (Albugo Candida) in Rapeseed Australasian Plant Pathology, 1981, 10, 44.	0.5	23
303	Bunch rot of Rhine Riesling grapes in the lower south-west of Western Australia. Australian Journal of Experimental Agriculture, 1980, 20, 247.	1.0	14
304	Reductions in Bunch Rot in Rhine Riesling Grapes From Bunch Thinning Australasian Plant Pathology, 1980, 9, 8.	0.5	8
305	Infection of Oilseed Rape and Cruciferous Weeds with Leptosphaeria maculans isolates from Oilseed Rape and Wild Radish Australasian Plant Pathology, 1978, 7, 3.	0.5	4
306	Decline of Cabernet Grapevines Australasian Plant Pathology, 1978, 7, 24.	0.5	0

#	Article	IF	CITATIONS
307	Root rot of subterranean clover in the irrigation areas of south-western Western Australia. Australian Journal of Experimental Agriculture, 1978, 18, 426.	1.0	37
308	The role of seed infection in the spread of blackleg of rape in Western Australia. Australian Journal of Experimental Agriculture, 1977, 17, 1040.	1.0	24
309	Effect of benomyl on 'blackleg' disease of rape in Western Australia. Australian Journal of Experimental Agriculture, 1976, 16, 276.	1.0	15
310	The role of pycnidiospores of Leptosphaeria maculans in the spread of blackleg disease in rape. Australian Journal of Experimental Agriculture, 1976, 16, 911.	1.0	33
311	Effects of temperature on development and progression in rape of crown canker caused by Leptosphaeria maculans. Australian Journal of Experimental Agriculture, 1975, 15, 705.	1.0	46
312	Late blackleg infections in rape are important Australasian Plant Pathology, 1975, 4, 3.	0.5	22
313	Benomyl and Carbendazim fail to provide effictive control of Blackleg in Rape Australasian Plant Pathology, 1975, 4, 11.	0.5	5
314	Application timing of herbicides glyphosate and atrazine sway respective epidemics of foliar pathogens in herbicideâ€ŧolerant rapeseed. Plant Pathology, 0, , .	1.2	1
315	Synergistic/antagonistic interactions between Neopseudocercosporella , Alternaria , Leptosphaeria and Hyaloperonospora determine aggregate foliar disease severity in rapeseed. Plant Pathology, 0, , .	1.2	4
316	Spatial and temporal distribution of faba bean gall (<i>Physoderma</i>) disease and its association with biophysical factors in Ethiopia. International Journal of Pest Management, 0, , 1-14.	0.9	7
317	Phoma black stem severity and phytoestrogen production in annual Medicago spp. is primarily determined by interaction of cultivar and pathogen isolate. Plant Pathology, 0,	1.2	3