Kazuhide Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948038/publications.pdf

Version: 2024-02-01

45 papers

2,271 citations

236925 25 h-index 243625 44 g-index

50 all docs

50 docs citations

50 times ranked

2580 citing authors

#	Article	IF	CITATIONS
1	Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Reports, 2022, 38, 110240.	6.4	24
2	SkewC: Identifying cells with skewed gene body coverage in single-cell RNA sequencing data. IScience, 2022, 25, 103777.	4.1	4
3	Effective pseudo-labeling based on heatmap for unsupervised domain adaptation in cell detection. Medical Image Analysis, 2022, 79, 102436.	11.6	8
4	Interpretable, Scalable, and Transferrable Functional Projection of Large-Scale Transcriptome Data Using Constrained Matrix Decomposition. Frontiers in Genetics, 2021, 12, 719099.	2.3	2
5	Nfatc1's Role in Mammary Epithelial Morphogenesis and Basal Stem/progenitor Cell Self-renewal. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 357-365.	2.7	1
6	Integrated Single-Cell Transcriptomics and Chromatin Accessibility Analysis Reveals Regulators of Mammary Epithelial Cell Identity. Cell Reports, 2020, 33, 108273.	6.4	36
7	The NFâ€Î°B regulator lκBβ exhibits different molecular interactivity and phosphorylation status from lκBα in an IKK2â€catalysed reaction. FEBS Letters, 2020, 594, 1532-1549.	2.8	4
8	Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition. Npj Systems Biology and Applications, 2019, 5, 21.	3.0	65
9	OVOL2 induces mesenchymal-to-epithelial transition in fibroblasts and enhances cell-state reprogramming towards epithelial lineages. Scientific Reports, 2019, 9, 6490.	3.3	38
10	NAPEâ€PLD controls OEA synthesis and fat absorption by regulating lipoprotein synthesis in an <i>in vitro</i> model of intestinal epithelial cells. FASEB Journal, 2019, 33, 3167-3179.	0.5	10
11	Overexpression of Transcription Factor Ovol2 in Epidermal Progenitor Cells Results in Skin Blistering. Journal of Investigative Dermatology, 2017, 137, 1805-1808.	0.7	7
12	An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and Multi-step Transition between Epithelial and Mesenchymal States. PLoS Computational Biology, 2015, 11, e1004569.	3.2	245
13	Integrative ChIP-seq/Microarray Analysis Identifies a CTNNB1 Target Signature Enriched in Intestinal Stem Cells and Colon Cancer. PLoS ONE, 2014, 9, e92317.	2.5	41
14	The Co-factor of LIM Domains (CLIM/LDB/NLI) Maintains Basal Mammary Epithelial Stem Cells and Promotes Breast Tumorigenesis. PLoS Genetics, 2014, 10, e1004520.	3.5	13
15	Mammary Morphogenesis and Regeneration Require the Inhibition of EMT at Terminal End Buds by Ovol2 Transcriptional Repressor. Developmental Cell, 2014, 29, 59-74.	7.0	175
16	Pygo2 regulates β-catenin–induced activation of hair follicle stem/progenitor cells and skin hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10215-10220.	7.1	21
17	Chromatin Effector Pygo2 Mediates Wnt-Notch Crosstalk to Suppress Luminal/Alveolar Potential of Mammary Stem and Basal Cells. Cell Stem Cell, 2013, 13, 48-61.	11.1	75
18	Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell Cycle, 2012, 11, 79-87.	2.6	25

#	Article	IF	Citations
19	A WNTer Revisit: New Faces of Î ² -Catenin and TCFs in Pluripotency. Science Signaling, 2011, 4, pe41.	3.6	20
20	Winning WNT: Race to Wnt signaling inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5929-5930.	7.1	35
21	Epithelial stem cells: An epigenetic and wntâ€centric perspective. Journal of Cellular Biochemistry, 2010, 110, 1279-1287.	2.6	27
22	Cripto-1 Is a Cell Surface Marker for a Tumorigenic, Undifferentiated Subpopulation in Human Embryonal Carcinoma Cells Â. Stem Cells, 2010, 28, 1303-1314.	3.2	57
23	Intercellular transfer regulation of the paracrine activity of GPI-anchored Cripto-1 as a Nodal co-receptor. Biochemical and Biophysical Research Communications, 2010, 403, 108-113.	2.1	12
24	Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. Journal of Cell Biology, 2009, 187, 343-353.	5 . 2	52
25	Neuronal Guidance Protein Netrin-1 Induces Differentiation in Human Embryonal Carcinoma Cells. Cancer Research, 2009, 69, 1717-1721.	0.9	16
26	Cripto-1 Is Required for Hypoxia to Induce Cardiac Differentiation of Mouse Embryonic Stem Cells. American Journal of Pathology, 2009, 175, 2146-2158.	3.8	54
27	Distinctive localization and opposed roles of vasohibin-1 and vasohibin-2 in the regulation of angiogenesis. Blood, 2009, 113, 4810-4818.	1.4	126
28	Role of the EGF-CFC Family in Mammary Gland Development and Neoplasia., 2009,, 87-102.		0
29	Regulation of human criptoâ€1 gene expression by TGFâ€Î²1 and BMPâ€4 in embryonal and colon cancer cells. Journal of Cellular Physiology, 2008, 215, 192-203.	4.1	42
30	Netrinâ \in 1 can affect morphogenesis and differentiation of the mouse mammary gland. Journal of Cellular Physiology, 2008, 216, 824-834.	4.1	24
31	Cell type dependent endocytic internalization of ErbB2 with an artificial peptide ligand that binds to ErbB2. Cell Biology International, 2008, 32, 814-826.	3.0	18
32	Activation of a Nodalâ€independent signaling pathway by Criptoâ€1 mutants with impaired activation of a Nodalâ€dependent signaling pathway. FEBS Letters, 2008, 582, 3997-4002.	2.8	13
33	Smad2 functions as a co-activator of canonical Wnt/ \hat{l}^2 -catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cellular Signalling, 2008, 20, 1632-1641.	3.6	48
34	Characterization of the glycosylphosphatidylinositol-anchor signal sequence of human Cryptic with a hydrophilic extension. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2671-2681.	2.6	8
35	Regulation of Cripto-1 Signaling and Biological Activity by Caveolin-1 in Mammary Epithelial Cells. American Journal of Pathology, 2008, 172, 345-357.	3.8	23
36	Growth Factor Induction of Cripto-1 Shedding by Glycosylphosphatidylinositol-Phospholipase D and Enhancement of Endothelial Cell Migration. Journal of Biological Chemistry, 2007, 282, 31643-31655.	3.4	60

3

#	Article	IF	CITATION
37	Requirement of Glycosylphosphatidylinositol Anchor of Cripto-1 for trans Activity as a Nodal Co-receptor. Journal of Biological Chemistry, 2007, 282, 35772-35786.	3.4	51
38	\hat{l}^2 -Catenin/TCF/LEF regulate expression of the short form human Cripto-1. Biochemical and Biophysical Research Communications, 2007, 355, 240-244.	2.1	36
39	Multiple processing forms and their biological activities of a novel angiogenesis inhibitor vasohibin. Biochemical and Biophysical Research Communications, 2006, 342, 640-646.	2.1	48
40	Vasohibin prevents arterial neointimal formation through angiogenesis inhibition. Biochemical and Biophysical Research Communications, 2006, 345, 919-925.	2.1	60
41	Isolation and Characterization of Vasohibin-2 as a Homologue of VEGF-Inducible Endothelium-Derived Angiogenesis Inhibitor Vasohibin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1051-1057.	2.4	81
42	Identification of Cripto-1 as a Novel Serologic Marker for Breast and Colon Cancer. Clinical Cancer Research, 2006, 12, 5158-5164.	7.0	79
43	Gene regulation of a novel angiogenesis inhibitor, vasohibin, in endothelial cells. Biochemical and Biophysical Research Communications, 2005, 327, 700-706.	2.1	84
44	Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. Journal of Clinical Investigation, 2004, 114, 898-907.	8.2	257
45	Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. Journal of Clinical Investigation, 2004, 114, 898-907.	8.2	141