
Natalia N Kuranova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and Phase Transformations and Physical and Mechanical Properties of Cu-Al-Ni Shape Memory Alloys Subjected to Severe Plastic Deformation and Annealing. Materials, 2021, 14, 4394.	1.3	8
2	Application of Isothermal Upset for Megaplastic Deformation of Cu–Al–Ni β Alloys. Technical Physics, 2020, 65, 1044-1050.	0.2	10
3	Atomic Disordering and BCC → FCC Transformation in the Heusler Compound Ni54Mn20Fe1Ga25 Subject to High-Pressure Torsional Megaplastic Deformation. Technical Physics, 2020, 65, 602-611.	0.2	4
4	Deformation-Induced Atomic Disordering and bcc → fcc Transformation in Heusler Alloy Ni54Mn21Ga25 Subjected to Megaplastic Deformation by High Pressure Torsion. Physics of Metals and Metallography, 2020, 121, 330-336.	0.3	6
5	The Effect of Plastification of Cu–14Al–4Ni Alloy with the Shape Memory Effect in High-Temperature Isothermal Precipitation. Technical Physics Letters, 2020, 46, 118-121.	0.2	9
6	Specific Features of the Atomic Structure of Ti50Ni25Cu25 Alloy Rapidly Quenched from Melt. Crystallography Reports, 2020, 65, 12-17.	0.1	0
7	Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects. Materials, 2019, 12, 2616.	1.3	28
8	Specific Features of the Atomic Structure of the Ti50Ni25Cu25 Alloy Amorphized during Rapid Quenching from a Melt. Physics of Metals and Metallography, 2019, 120, 164-170.	0.3	3
9	Multicomponent alloys with thermally, mechanically and magnetically controlled shape memory effects. Journal of Physics: Conference Series, 2019, 1389, 012098.	0.3	0
10	Effect of the Temperature of Isothermal Upsetting on the Structure and the Properties of the Shape Memory Cu–14 wt % Al–4 wt % Ni Alloy. Physics of Metals and Metallography, 2019, 120, 1159-1165.	0.3	10
11	Influence of Thermomechanical Treatment on Structural-Phase Transformations and Mechanical Properties of the Cu–Al–Ni Shape-Memory Alloys. Russian Physics Journal, 2019, 61, 1681-1686.	0.2	12
12	Development of High-Strength, Fine, and Ultrafine-Grained Shape Memory Alloys. Physics of Metals and Metallography, 2018, 119, 1346-1349.	0.3	0
13	Structure and Thermoelastic Martensitic Transformations in Ternary Ni–Ti–Zr Alloys with High-Temperature Shape Memory Effects. Physics of Metals and Metallography, 2018, 119, 582-588.	0.3	5
14	Molecular Dynamics Study of the Deformation Processes of Metallic Materials in Structural and Phase (Martensitic) Transformations. Physics of Metals and Metallography, 2018, 119, 589-597.	0.3	6
15	Effect of the Thermomechanical Treatment on Structural and Phase Transformations in Cu–14Al–3Ni Shape Memory Alloy Subjected to High-Pressure Torsion. Physics of Metals and Metallography, 2018, 119, 374-382.	0.3	16
16	FEATURES OF LOW-TEMPERATURE CRYSTALLIZATION OF Ti2NiCu AMORPHIZED BY THE METHOD OF SPINNING FROM MELT. Diagnostics Resource and Mechanics of Materials and Structures, 2018, , 51-58.	0.1	0
17	Structure, phase transformations and properties of the TiNi-TiCu alloys subjected to high pressure torsion. Materials Today: Proceedings, 2017, 4, 4846-4850.	0.9	2
18	Structure and phase transformations in copper-alloyed rapidly melt-quenched Ni50Ti32Hf18-based alloys with high-temperature shape memory effect. Physics of Metals and Metallography, 2017, 118, 997-1005.	0.3	7

#	Article	IF	CITATIONS
19	The structure–phase transformations and mechanical properties of the shape memory effect alloys based on the system Cu–Al–Ni. Materials Today: Proceedings, 2017, 4, 4758-4762.	0.9	8
20	Features of thermoelastic martensitic transformations, structure and properties in ternary B2-alloys based on NiMn – NiTi, NiMn – NiAl, NiMn – NiGa, Ni 2 MnGa – Ni 3 Ga quasi-binary systems. Materials Today: Proceedings, 2017, 4, 4717-4721.	0.9	0
21	Fine structure and mechanical properties of the shape-memory Ni50Ti32Hf18 alloy rapidly quenched by spinning. Technical Physics, 2017, 62, 1189-1193.	0.2	5
22	Features of Crystallization of Rapidly Quenched Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 Alloys from Melt with High-Temperature Shape Memory Effect. Technical Physics, 2017, 62, 1843-1847.	0.2	2
23	Effect of gallium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni–Mn–Ga alloys. Technical Physics, 2016, 61, 547-553.	0.2	7
24	Thermoelastic martensitic transformations, mechanical properties, and shape-memory effects in rapidly quenched Ni45Ti32Hf18Cu5 alloy in the ultrafine-grained state. Physics of Metals and Metallography, 2016, 117, 1261-1269.	0.3	6
25	Structural and phase transformations, mechanical properties, and shape-memory effects in quasibinary Ni50Ti38Hf12 alloy obtained by quenching from the melt. Physics of Metals and Metallography, 2016, 117, 1251-1260.	0.3	10
26	Thermoelastic martensitic transformations in ternary Ni50Mn50–z Ga z alloys. Technical Physics Letters, 2016, 42, 75-78.	0.2	1
27	Structure and Mechanical Properties of Shape-Memory Alloys of the Ti – Ni – Cu System. Metal Science and Heat Treatment, 2016, 57, 739-745.	0.2	4
28	Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperature shape memory effect. Technical Physics, 2016, 61, 1009-1014.	0.2	15
29	Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys. Technical Physics, 2016, 61, 554-562.	0.2	11
30	Specific features of the electronic properties of Ti50Ni50–x Cu x alloys with the shape memory effect. Physics of the Solid State, 2016, 58, 1108-1114.	0.2	0
31	Structural and phase transformations and properties of TiNi–TiCu quasi-binary alloys. Technical Physics Letters, 2016, 42, 376-379.	0.2	2
32	Effect of titanium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni—Mn—Ti alloys. Technical Physics, 2015, 60, 1330-1334.	0.2	7
33	Specific Features of the Phase Composition and Structure of a Highâ€Strength Multiâ€Component Fe–W–Mo–Cr–V–Si–Mn–C Steel Synthesized via Laser Remelting. Advanced Engineering Materials 2015, 17, 1504-1510.	5,1.6	3
34	Magnetic and structural phase transitions and the tetragonality of thermoelastic martensite in quasi-binary Heusler alloys Ni2 + x Mn1 â^' x Ga. Physics of the Solid State, 2015, 57, 45-52.	0.2	4
35	Effect of aluminum alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni-Mn-Al alloys. Technical Physics, 2015, 60, 1000-1004.	0.2	5
36	Structural and phase transformations in quasi-binary TiNi–TiCu alloys with thermomechanical shape-memory effects. Physics of Metals and Metallography, 2015, 116, 1221-1233.	0.3	8

NATALIA N KURANOVA

#	Article	IF	CITATIONS
37	Peculiarities of the phase composition and structure of the high-entropy FeWMoCrVSiMnC multicomponent steel. Technical Physics, 2015, 60, 1088-1092.	0.2	2
38	Structure and physical properties of the high-entropy AlCrFeCoNiCu alloy rapidly quenched from the melt. Physics of the Solid State, 2015, 57, 1616-1626.	0.2	7
39	Structure and phase transformations in TiNiFe ternary alloys subjected to plastic deformation by high-pressure torsion and subsequent heat treatment. Physics of Metals and Metallography, 2014, 115, 365-379.	0.3	8
40	Formation of nanostructured states in ternary TiNiFe-based shape memory alloys during megaplastic deformation and subsequent heat treatment. Technical Physics, 2014, 59, 685-691.	0.2	2
41	Effect of heat treatment on structural and phase transformations in the Ti49.5Ni50.5 alloy amorphized by high-pressure torsion. Physics of Metals and Metallography, 2013, 114, 488-502.	0.3	5
42	High-temperature shape memory effect and the B2-L10 thermoelastic martensitic transformation in Ni-Mn intermetallics. Technical Physics, 2013, 58, 878-887.	0.2	15
43	On the effect of cobalt doping on thermoelastic martensitic transformations in ferromagnetic Heusler Ni50 â^² x Co x Mn29Ga21 magnetically controlled shape memory alloys. Technical Physics Letters, 2013, 39, 737-740.	0.2	2
44	Effect of cobalt doping on thermoelastic martensitic transformations and physical properties of magnetic shape memory alloys Ni50 â^' x Co x Mn29Ga21. Physics of the Solid State, 2013, 55, 2413-2421.	0.2	7
45	Crystal structure and physical properties of magnetic shape memory alloys Ni50 â^ x Cu x Mn29Ga21. Physics of the Solid State, 2013, 55, 2471-2478.	0.2	6
46	Thermo- and Deformation Induced Martensitic Transformations in Binary TiNi-Based Alloys Subjected to Severe Plastic Deformation. Materials Science Forum, 2013, 738-739, 530-534.	0.3	3
47	Baroelastic shape memory effects in titanium nickelide alloys subjected to plastic deformation under high pressure. Technical Physics, 2012, 57, 1106-1114.	0.2	10
48	Phase and structural transformations in the Ti49.5Ni50.5 alloy with a shape-memory effect during torsion under high pressure. Physics of Metals and Metallography, 2012, 113, 256-270.	0.3	20
49	Formation of nanocrystalline structure in the amorphous Ti50Ni25Cu25 alloy upon severe thermomechanical treatment and the size effect of the thermoelastic martensitic B2 ↔ B19 transformation. Physics of Metals and Metallography, 2012, 113, 271-282.	0.3	24
50	Formation of the nanocrystalline structure in the Ti50Ni25Cu25 shape-memory alloy under severe thermomechanical treatment. Physics of Metals and Metallography, 2011, 112, 603-612.	0.3	11
51	Effect of plastic deformation on physical properties and structure of the shape memory alloy Ti49.5Ni50.5. Physics of the Solid State, 2011, 53, 1397-1403.	0.2	4
52	Effect of severe plastic deformation on the phase and structural transformations and mechanical properties of metastable austenitic Ti-Ni alloys. Russian Metallurgy (Metally), 2010, 2010, 296-300.	0.1	3
53	On the nature of anomalously high plasticity of high-strength titanium nickelide alloys with shape-memory effects: II. Mechanisms of plastic deformation upon isothermal loading. Physics of Metals and Metallography, 2009, 107, 298-311.	0.3	20
54	Application of severe plastic deformation by torsion to form amorphous and nanocrystalline states in large-size TiNi alloy sample. Physics of Metals and Metallography, 2009, 108, 131-138.	0.3	23

#	Article	IF	CITATIONS
55	Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion. Physics of Metals and Metallography, 2009, 108, 556-568.	0.3	45
56	On the nature of anomalously high plasticity of high-strength titanium nickelide alloys with shape-memory effects: I. Initial structure and mechanical properties. Physics of Metals and Metallography, 2008, 106, 520-530.	0.3	28
57	Effect of severe plastic deformation by torsion on the structure and properties of TiNi-based alloys with shape memory effects. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 550-552.	0.1	3
58	Particularités de la structure et des transformations de phase dans les alliages à mémoire de forme Ã base de TiNi après déformation plastique intense. Annales De Chimie: Science Des Materiaux, 2002, 27, 77-88.	0.2	86
59	Electrical studies of surface reconstruction resulting from chalcogen evaporation at the Ag2±ÎX/Vacuum interface (X=S, Se)X/Vacuum interface (X=S, Se). Ionics, 2000, 6, 235-238.	1.2	0