
Leszek Zaraska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947863/publications.pdf Version: 2024-02-01

LESTER ZADACKA

#	Article	IF	CITATIONS
1	Lithium and sodium storage performance of tin oxyphosphate anode materials. Applied Surface Science, 2022, 579, 152126.	6.1	4
2	Photoelectrochemical properties of anodic iron oxide layers. Journal of Electroanalytical Chemistry, 2022, , 116143.	3.8	4
3	Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting. Electrochimica Acta, 2022, 414, 140176.	5.2	17
4	Cathodic deposition of SnO2 layers on transparent conductive substrates and their photoelectrochemical activity. Journal of Industrial and Engineering Chemistry, 2022, 111, 380-388.	5.8	4
5	Electrochemical growth and characterization of micro/nanostructured SnOx with crater-like morphology. Electrochimica Acta, 2022, 423, 140608.	5.2	4
6	CdS-Decorated Porous Anodic SnOx Photoanodes with Enhanced Performance under Visible Light. Materials, 2022, 15, 3848.	2.9	4
7	Tuning the Photoelectrochemical Properties of Narrow Band Gap Nanoporous Anodic SnOx Films by Simple Soaking in Water. Materials, 2021, 14, 1777.	2.9	5
8	Electrochemical Oxidation of Ti15Mo Alloy—The Impact of Anodization Parameters on Surface Morphology of Nanostructured Oxide Layers. Nanomaterials, 2021, 11, 68.	4.1	4
9	Materials characterization of TiO ₂ nanotubes decorated by Au nanoparticles for photoelectrochemical applications. RSC Advances, 2021, 11, 38727-38738.	3.6	11
10	The influence of water-induced crystallization on the photoelectrochemical properties of porous anodic tin oxide films. Journal of Industrial and Engineering Chemistry, 2020, 90, 159-165.	5.8	15
11	Fast fabrication of nanostructured semiconducting oxides by anodic oxidation of brass. Materials Science in Semiconductor Processing, 2020, 113, 105035.	4.0	8
12	Nanostructured semiconductor oxides formed by anodic oxidation of metallic Sn. , 2020, , 349-384.		2
13	Anodic formation of zinc oxide nanostructures with various morphologies. , 2020, , 385-414.		5
14	Improving Photoelectrochemical Properties of Anodic WO3 Layers by Optimizing Electrosynthesis Conditions. Molecules, 2020, 25, 2916.	3.8	23
15	Hierarchical Nanoporous Sn/SnOx Systems Obtained by Anodic Oxidation of Electrochemically Deposited Sn Nanofoams. Nanomaterials, 2020, 10, 410.	4.1	5
16	Nickel Phosphide Nanomaterials for Hydrogen Evolution Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 1429-1429.	0.0	0
17	Nanostructured Sensors for Non-Enzymatic Detection of Hydrogen Peroxide and Glucose. ECS Meeting Abstracts, 2020, MA2020-02, 1470-1470.	0.0	0
18	Synthesis and Characterization of Ordered Cobalt Phosphide Nanowire Arrays As a Potential Catalyst for HER/Oer Reactions ECS Meeting Abstracts, 2020, MA2020-02, 1433-1433.	0.0	0

LESZEK ZARASKA

#	Article	IF	CITATIONS
19	Morphology of nanoporous anodic films formed on tin during anodic oxidation in less commonly used acidic and alkaline electrolytes. Surface and Coatings Technology, 2019, 362, 191-199.	4.8	22
20	The effect of anodizing potential and annealing conditions on the morphology, composition and photoelectrochemical activity of porous anodic tin oxide films. Electrochimica Acta, 2019, 319, 18-30.	5.2	22
21	Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochimica Acta, 2019, 305, 349-359.	5.2	39
22	Influence of anodizing conditions on generation of internal cracks in anodic porous tin oxide films grown in NaOH electrolyte. Applied Surface Science, 2018, 439, 672-680.	6.1	24
23	The effect of anodization conditions on the morphology of porous tungsten oxide layers formed in aqueous solution. Journal of Electroanalytical Chemistry, 2018, 829, 106-115.	3.8	30
24	Electrochemical growth of multisegment nanoporous tin oxide layers by applying periodically changed anodizing potential. Applied Surface Science, 2018, 455, 1005-1009.	6.1	15
25	Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity. Electrochimica Acta, 2017, 231, 61-68.	5.2	35
26	AAO Templates with Different Patterns and Channel Shapes. , 2017, , 107-156.		8
27	Template-assisted synthesis of rough Ag nanorods and their application for amperometric sensing of H2O2. Comptes Rendus Chimie, 2017, 20, 693-696.	0.5	2
28	Controlled synthesis of nanoporous tin oxide layers with various pore diameters and their photoelectrochemical properties. Electrochimica Acta, 2017, 254, 238-245.	5.2	26
29	Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. Journal of Electroanalytical Chemistry, 2017, 801, 511-520.	3.8	47
30	High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 94-98.	3.5	43
31	Formation of crack-free nanoporous tin oxide layers via simple one-step anodic oxidation in NaOH at low applied voltages. Applied Surface Science, 2016, 390, 31-37.	6.1	33
32	Nanoporous tin oxides synthesized via electrochemical anodization in oxalic acid and their photoelectrochemical activity. Electrochimica Acta, 2016, 205, 273-280.	5.2	25
33	Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes. Materials Letters, 2016, 171, 315-318.	2.6	31
34	The effect of electrolyte change on the morphology and degree of nanopore order of porous alumina formed by two-step anodization. Electrochimica Acta, 2016, 198, 259-267.	5.2	26
35	Formation of Nanoporous Tin Oxide Layers on Different Substrates during Anodic Oxidation in Oxalic Acid Electrolyte. Advances in Condensed Matter Physics, 2015, 2015, 1-11.	1.1	8
36	Growth and complex characterization of nanoporous oxide layers on metallic tin during one-step anodic oxidation in oxalic acid at room temperature. Applied Surface Science, 2015, 351, 1034-1042.	6.1	35

LESZEK ZARASKA

#	Article	IF	CITATIONS
37	Synthesis of Nanoporous Anodic Alumina by Anodic Oxidation of Low Purity Aluminum Substrates. Springer Series in Materials Science, 2015, , 61-106.	0.6	10
38	Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software. Applied Physics A: Materials Science and Processing, 2014, 114, 571-577.	2.3	28
39	Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures. Applied Surface Science, 2014, 305, 650-657.	6.1	39
40	The effect of anode surface area on nanoporous oxide formation during anodizing of low purity aluminum (AA1050 alloy). Journal of Solid State Electrochemistry, 2014, 18, 361-368.	2.5	28
41	Nanoporous anodic titania observed at the bottom side of the oxide layer. Applied Surface Science, 2014, 315, 268-273.	6.1	4
42	Synthesis of nanoporous tin oxide layers by electrochemical anodization. Electrochimica Acta, 2013, 104, 549-557.	5.2	59
43	Pulsatile Releasing Platform of Nanocontainers Equipped with Thermally Responsive Polymeric Nanovalves. Chemistry of Materials, 2013, 25, 514-520.	6.7	33
44	The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films, 2013, 534, 155-161.	1.8	84
45	Porous alumina membranes with branched nanopores as templates for fabrication of Y-shaped nanowire arrays. Journal of Solid State Electrochemistry, 2012, 16, 3611-3619.	2.5	35
46	Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays. Applied Surface Science, 2012, 258, 7781-7786.	6.1	24
47	Template-assisted fabrication of tin and antimony based nanowire arrays. Applied Surface Science, 2012, 258, 9718-9722.	6.1	8
48	GridSpace2 Virtual Laboratory Case Study: Implementation of Algorithms for Quantitative Analysis of Grain Morphology in Self-assembled Hexagonal Lattices According to the Hillebrand Method. Lecture Notes in Computer Science, 2012, , 240-251.	1.3	10
49	Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. Journal of Solid State Electrochemistry, 2011, 15, 2427-2436.	2.5	109
50	Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum. Electrochimica Acta, 2010, 55, 4377-4386.	5.2	155
51	Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surface and Coatings Technology, 2010, 205, 2432-2437.	4.8	63
52	Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays. Electrochimica Acta, 2010, 55, 4368-4376.	5.2	108
53	The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surface and Coatings Technology, 2010, 204, 1729-1737.	4.8	85