
Patricia Lemarchand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of human induced pluripotent stem cell lines from two patients affected by catecholamine-induced QT prolongation (CIQTP). Stem Cell Research, 2022, 59, 102649.	0.3	0
2	Generation of human induced pluripotent stem cell lines from four unrelated healthy control donors carrying European genetic background. Stem Cell Research, 2022, 59, 102647.	0.3	2
3	Generation of three human induced pluripotent stem cell lines with IRX5 knockout and knockin genetic editions using CRISPR-Cas9 system. Stem Cell Research, 2022, 58, 102627.	0.3	4
4	Generation of human induced pluripotent stem cell lines from three patients affected by Catecholaminergic Polymorphic ventricular tachycardia (CPVT) carrying heterozygous mutations in RYR2 gene. Stem Cell Research, 2022, 60, 102688.	0.3	1
5	Evaluation of the Post-COVID-19 Functional Status (PCFS) Scale in a cohort of patients recovering from hypoxemic SARS-CoV-2 pneumonia. BMJ Open Respiratory Research, 2022, 9, e001136.	1.2	10
6	Human model of <i>IRX5</i> mutations reveals key role for this transcription factor in ventricular conduction. Cardiovascular Research, 2021, 117, 2092-2107.	1.8	17
7	A consistent arrhythmogenic trait in Brugada syndrome cellular phenotype. Clinical and Translational Medicine, 2021, 11, e413.	1.7	5
8	Functional Impact of BeKm-1, a High-Affinity hERG Blocker, on Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 7167.	1.8	5
9	Maurocalcin and its analog MCaE12A facilitate Ca2+ mobilization in cardiomyocytes. Biochemical Journal, 2020, 477, 3985-3999.	1.7	0
10	Deconditioning, fatigue and impaired quality of life in long-term survivors after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2018, 53, 281-290.	1.3	29
11	Sustained quality of life improvement after intracoronary injection of autologous bone marrow cells in the setting of acute myocardial infarction: results from the BONAMI trial. Quality of Life Research, 2017, 26, 121-125.	1.5	11
12	HIV-Tat induces a decrease in I Kr and I Ks via reduction in phosphatidylinositol-(4,5)-bisphosphate availability. Journal of Molecular and Cellular Cardiology, 2016, 99, 1-13.	0.9	24
13	Mesenchymal Stem Cells Induce Suppressive Macrophages Through Phagocytosis in a Mouse Model of Asthma. Stem Cells, 2016, 34, 1836-1845.	1.4	140
14	Impact of pre-transplant diffusion lung capacity for nitric oxide (DLNO) and of DLNO/pre-transplant diffusion lung capacity for carbon monoxide (DLNO/DLCO) ratio on pulmonary outcomes in adults receiving allogeneic stem cell transplantation for hematological diseases. Bone Marrow Transplantation, 2016, 51, 589-592.	1.3	5
15	Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and impaired left ventricular function: Results of the MESAMI 1 pilot trial. International Journal of Cardiology, 2016, 209, 258-265.	0.8	65
16	Predictors of ventricular remodelling in patients with reperfused acute myocardial infarction and left ventricular dysfunction candidates for bone marrow cell therapy: insights from the BONAMI trial. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 740-748.	3.3	4
17	Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia. DMM Disease Models and Mechanisms, 2015, 9, 81-90.	1.2	34
18	Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in Patients With Acute Myocardial Infarction Based on Individual Patient Data, Circulation Research, 2015, 116, 1346-1360	2.0	270

#	Article	IF	CITATIONS
19	Toward Personalized Medicine: Using Cardiomyocytes Differentiated From Urineâ€Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics of Type 2 Long QT Syndrome. Journal of the American Heart Association, 2015, 4, e002159.	1.6	61
20	Stable long-term pulmonary function after fludarabine, antithymocyte globulin and i.v. BU for reduced-intensity conditioning allogeneic SCT. Bone Marrow Transplantation, 2014, 49, 622-627.	1.3	11
21	Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. European Heart Journal, 2014, 35, 989-998.	1.0	123
22	Difference in mobilization of progenitor cells after myocardial infarction in smoking versus non-smoking patients: insights from the BONAMI trial. Stem Cell Research and Therapy, 2013, 4, 152.	2.4	18
23	Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction. PLoS ONE, 2012, 7, e51991.	1.1	79
24	Autologous bone marrow cells and ischemic cardiomyopathy. Future Cardiology, 2011, 7, 603-607.	0.5	1
25	Signaling by the Matrix Proteoglycan Decorin Controls Inflammation and Cancer Through PDCD4 and MicroRNA-21. Science Signaling, 2011, 4, ra75.	1.6	283
26	Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis, 2011, 216, 348-354.	0.4	119
27	Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. European Heart Journal, 2011, 32, 1748-1757.	1.0	158
28	Developing Cell Therapy Techniques for Respiratory Disease: Intratracheal Delivery of Genetically Engineered Stem Cells in a Murine Model of Airway Injury. Human Gene Therapy, 2009, 20, 1329-1343.	1.4	63
29	Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. Journal of Cellular and Molecular Medicine, 2009, 13, 3703-3712.	1.6	36
30	Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovascular Research, 2006, 69, 348-358.	1.8	116
31	Adenovirus-Mediated Gene Transfer of Superoxide Dismutase and Catalase Decreases Restenosis after Balloon Angioplasty. Journal of Vascular Research, 2005, 42, 255-265.	0.6	30
32	Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Therapy, 2003, 10, 875-889.	2.3	61
33	Effect of adenovirus-mediated overexpression of decorin on metalloproteinases, tissue inhibitors of metalloproteinases and cytokines secretion by human gingival fibroblasts. Matrix Biology, 2003, 22, 251-258.	1.5	42
34	In vivo selective and distant killing of cancer cells, using adenovirusâ€mediated decorin gene transfer. FASEB Journal, 2003, 17, 1-21.	0.2	103
35	Cleavage of p21 by Proteinase-3, a Myeloid-specific Serine Protease, Potentiates Cell Proliferation. Journal of Biological Chemistry, 2002, 277, 47338-47347.	1.6	44
36	Long-Term Reversal of Established Autoimmunity upon Transient Blockade of the LFA-1/Intercellular Adhesion Molecule-1 Pathway. Journal of Immunology, 2002, 168, 3641-3648.	0.4	40

PATRICIA LEMARCHAND

#	Article	IF	CITATIONS
37	Prolonged Islet Allograft Survival by Adenovirus-Mediated Transfer of sICAM-1/Ig Immunoadhesin Gene. Human Gene Therapy, 2002, 13, 1441-1450.	1.4	17
38	Reduction of Macrophage Activation after Antioxidant Enzymes Gene Transfer to Rat Insulinoma INS-1 Cells. Immunobiology, 2002, 205, 193-203.	0.8	5
39	Gene Therapy for Acute Lung Injury. , 2001, , 53-63.		Ο
40	Contribution of adenoviral-mediated superoxide dismutase gene transfer to the reduction in nitric oxide-induced cytotoxicity on human islets and INS-1 insulin-secreting cells. Diabetologia, 2000, 43, 625-631.	2.9	55
41	Adenovirus-Mediated Lung Vascular Endothelial Growth Factor Overexpression Protects against Hypoxic Pulmonary Hypertension in Rats. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 762-771.	1.4	160
42	Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase. Molecular and Cellular Biology, 2000, 20, 6704-6711.	1.1	376
43	ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose. Molecular and Cellular Biology, 1999, 19, 3760-3768.	1.1	491
44	Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia, 1998, 41, 1093-1100.	2.9	123
45	Adenoviral-Mediated Catalase Gene Transfer Protects Porcine and Human Islets In Vitro Against Oxidative Stress. Transplantation Proceedings, 1998, 30, 459.	0.3	11
46	Gene Therapy for Oxidant Injury-Related Diseases: Adenovirus-Mediated Transfer of Superoxide Dismutase and Catalase cDNAs Protects against Hyperoxia but Not Against Ischemia–Reperfusion Lung Injury. Human Gene Therapy, 1998, 9, 1487-1496.	1.4	96
47	Obesity-related Overexpression of Fatty-acid Synthase Gene in Adipose Tissue Involves Sterol Regulatory Element-binding Protein Transcription Factors. Journal of Biological Chemistry, 1998, 273, 29164-29171.	1.6	112
48	Thrombus Generation after Adenovirus-Mediated Gene Transfer into Atherosclerotic Arteries. Human Gene Therapy, 1998, 9, 2795-2800.	1.4	12
49	Vasomotor Dysfunction Early after Exposure of Normal Rabbit Arteries to an Adenoviral Vector. Human Gene Therapy, 1997, 8, 1033-1040.	1.4	37
50	Prospects for gene therapy in cardiovascular disease. European Heart Journal, 1996, 17, 1312-1317.	1.0	24
51	Gene Therapy in Lung Transplantation: Feasibility of <i>Ex Vivo</i> Adenovirus-Mediated Gene Transfer to the Graft. Human Gene Therapy, 1996, 7, 1837-1845.	1.4	39
52	Which gene for which restenosis?. Lancet, The, 1995, 346, 1442-1443.	6.3	16
53	In vivo adenovirus-mediated gene transfer to lungs via pulmonary artery. Journal of Applied Physiology, 1994, 76, 2840-2845.	1.2	52
54	Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress Journal of Clinical Investigation, 1994, 93, 297-302.	3.9	51

PATRICIA LEMARCHAND

#	Article	IF	CITATIONS
55	In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors Circulation Research, 1993, 72, 1132-1138.	2.0	260
56	Protection of human endothelial cells from oxidant injury by adenovirus-mediated transfer of the human catalase cDNA. Nucleic Acids Research, 1993, 21, 1607-1612.	6.5	99
57	Efficient gene transfer into myocardium by direct injection of adenovirus vectors Circulation Research, 1993, 73, 1202-1207.	2.0	261
58	Efficient and selective adenovirus-mediated gene transfer into vascular neointima Circulation, 1993, 88, 2838-2848.	1.6	163
59	Bronchial Clearance of DTPA Is Increased in Acute Asthma but Not in Chronic Asthma. The American Review of Respiratory Disease, 1992, 145, 147-152.	2.9	28
60	Adenovirus-mediated transfer of a recombinant human alpha 1-antitrypsin cDNA to human endothelial cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6482-6486.	3.3	180
61	Cardiorespiratory Arrest Following Peak Expiratory Flow Measurement During Attack of Asthma. Chest, 1991, 100, 1168-1169.	0.4	16