List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution of two-dimensional diffusion–advection problems for non-isotropic media with spatially variable velocity field by the boundary element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	4
2	One-dimensional scalar wave propagation in multi-region domains by the boundary element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	3
3	Computational modelling of multi-stage hydraulic fractures under stress shadowing and intersecting with pre-existing natural fractures. Acta Mechanica, 2019, 230, 1037-1059.	1.1	12
4	An efficient multi-time step FEM–SFEM iterative coupling procedure for elastic–acoustic interaction problems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	1
5	The boundary element method applied to the solution of two-dimensional diffusion–advection problems for non-isotropic materials. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 4533-4545.	0.8	5
6	Numerical simulation of MZF design with non-planar hydraulic fracturing from multi-lateral horizontal wells. Journal of Natural Gas Science and Engineering, 2017, 46, 93-107.	2.1	25
7	A regularization scheme applied to the direct interpolation boundary element technique with radial basis functions for solving eigenvalue problem. Engineering Analysis With Boundary Elements, 2017, 74, 14-18.	2.0	16
8	A discontinuous Petrov–Galerkin (DPG) formulation for the FEM applied to the Helmholtz equation for high wavenumbers. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 1529-1544.	0.8	3
9	Three-dimensional investigation of multiple stage hydraulic fracturing in unconventional reservoirs. Journal of Petroleum Science and Engineering, 2016, 146, 1063-1078.	2.1	47
10	A transgressive sedimentary sequence assessment by multioffset GPR data. , 2016, , .		0
11	On the stress-shadow effects of multiple-stage hydraulic fracturing in unconventional reservoirs by using cohesive phantom node method. , 2016, , .		3
12	Sub-regions without subdomain partition with boundary elements. Engineering Analysis With Boundary Elements, 2016, 71, 169-173.	2.0	8
13	Theory of equivalent staggeredâ€grid schemes: application to rotated and standard grids in anisotropic media. Geophysical Prospecting, 2015, 63, 1097-1125.	1.0	12
14	An accurate solution of elastodynamic problems by numerical local Green's functions. Journal of Physics: Conference Series, 2015, 633, 012102.	0.3	0
15	Solving Helmholtz problems with the boundary element method using direct radial basis function interpolation. Engineering Analysis With Boundary Elements, 2015, 61, 218-225.	2.0	31
16	An explicit time-stepping technique for elastic waves under concepts of Green's functions computed locally by the FEM. Engineering Analysis With Boundary Elements, 2015, 50, 381-394.	2.0	19
17	Modelling of Scalar Wave Propagation Problems in Heterogeneous Media by the Explicit Green's Approach Method. Journal of Physics: Conference Series, 2014, 490, 012214.	0.3	0
18	A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis. Engineering Structures, 2014, 80, 118-136.	2.6	34

#	Article	IF	CITATIONS
19	The Explicit Green's Approach with stability enhancement for solving the bioheat transfer equation. International Journal of Heat and Mass Transfer, 2014, 76, 393-404.	2.5	12
20	Dynamic analysis of Timoshenko beams by the boundary element method. Engineering Analysis With Boundary Elements, 2013, 37, 1602-1616.	2.0	20
21	A CQM-based BEM for transient heat conduction problems in homogeneous materials and FGMs. Applied Mathematical Modelling, 2013, 37, 776-792.	2.2	16
22	A new family of finite-difference schemes to solve the heterogeneous acoustic wave equation. Geophysics, 2012, 77, T187-T199.	1.4	48
23	Experimental Validation of Numerical Solutions Using the Explicit Green's Approach to Simulate Transient Heat Conduction in Multilayer Systems. Numerical Heat Transfer; Part A: Applications, 2012, 61, 651-668.	1.2	3
24	Solution of hyperbolic bioheat transfer problems by numerical green's functions: the ExGA-linear θ method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2012, 34, 459-468.	0.8	7
25	Transient heat conduction under nonzero initial conditions: A solution using the boundary element method in the frequency domain. Engineering Analysis With Boundary Elements, 2012, 36, 562-567.	2.0	20
26	Two-dimensional elastodynamics by the time-domain boundary element method: Lagrange interpolation strategy in time integration. Engineering Analysis With Boundary Elements, 2012, 36, 1164-1172.	2.0	21
27	Transient heat conduction by the boundary element method: Dâ€BEM approaches. International Journal for Numerical Methods in Engineering, 2012, 89, 897-913.	1.5	7
28	Scalar wave equation by the boundary element method: A Dâ€BEM approach with constant timeâ€weighting functions. International Journal for Numerical Methods in Engineering, 2010, 81, 1281-1297.	1.5	13
29	Hydrological modelling and water balance of the Negro River basin: evaluation based on <i>in situ</i> and spatial altimetry data. Hydrological Processes, 2010, 24, 3219-3236.	1.1	43
30	Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sensing of Environment, 2010, 114, 2160-2181.	4.6	245
31	A novel time-marching scheme using numerical Green's functions: A comparative study for the scalar wave equation. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1502-1512.	3.4	10
32	Formulation of an efficient hybrid time–frequency domain solution procedure for linear structural dynamic problems. Computers and Structures, 2010, 88, 331-346.	2.4	21
33	A Novel Higher-Order Time Integration Method Using the Modified Explicit Green's Approach for Linear Parabolic Problems. Numerical Heat Transfer, Part B: Fundamentals, 2009, 56, 211-230.	0.6	4
34	Hydrological monitoring of poorly gauged basins based on rainfall–runoff modeling and spatial altimetry. Journal of Hydrology, 2009, 379, 205-219.	2.3	68
35	Scalar wave equation by the boundary element method: a D-BEM approach with non-homogeneous initial conditions. Computational Mechanics, 2009, 44, 31-44.	2.2	17
36	A new family of time integration methods for heat conduction problems using numerical green's functions. Computational Mechanics, 2009, 44, 519-531.	2.2	9

#	Article	IF	CITATIONS
37	Numerical solution for the linear transient heat conduction equation using an Explicit Green's Approach. International Journal of Heat and Mass Transfer, 2009, 52, 694-701.	2.5	29
38	A hybrid time/Laplace integration method based on numerical Green's functions in conduction heat transfer. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2662-2672.	3.4	12
39	An efficient time-truncated boundary element formulation applied to the solution of the two-dimensional scalar wave equation. Engineering Analysis With Boundary Elements, 2009, 33, 43-53.	2.0	12
40	An efficient hybrid time-Laplace domain method for elastodynamic analysis based on the explicit Green's approach. International Journal of Solids and Structures, 2009, 46, 3093-3102.	1.3	10
41	Numerical Green's function for a two-dimensional diffusion equation. WIT Transactions on Modelling and Simulation, 2009, , .	0.0	0
42	Analytical time integration for BEM axisymmetric acoustic modelling. International Journal for Numerical Methods in Engineering, 2008, 73, 1989-2010.	1.5	2
43	A FEM–BEM coupling procedure to model the propagation of interacting acoustic–acoustic/acoustic–elastic waves through axisymmetric media. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3828-3835.	3.4	25
44	An efficient time-domain FEM/BEM coupling approach based on FEM implicit Green's functions and truncation of BEM time convolution process. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 1816-1826.	3.4	26
45	Explicit time-domain approaches based on numerical Green's functions computed by finite differences – The ExGA family. Journal of Computational Physics, 2007, 227, 851-870.	1.9	30
46	Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 2007, 94, 277-292.	1.6	209
47	An efficient stabilized boundary element formulation for 2D time-domain acoustics and elastodynamics. Computational Mechanics, 2007, 40, 355-365.	2.2	23
48	Time and space derivatives in a BEM formulation based on the CQM with initial conditions contribution. WIT Transactions on Modelling and Simulation, 2007, , .	0.0	0
49	Numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology, 2006, 318, 173-183.	2.3	18
50	A time-domain boundary element formulation for the dynamic analysis of non-linear porous media. Engineering Analysis With Boundary Elements, 2006, 30, 363-370.	2.0	12
51	Dynamic analysis of fluid–soil–structure interaction problems by the boundary element method. Journal of Computational Physics, 2006, 219, 498-512.	1.9	29
52	Boundary elements with equilibrium satisfaction—a consistent formulation for dynamic problems considering non-linear effects. International Journal for Numerical Methods in Engineering, 2006, 65, 701-713.	1.5	9
53	Initial conditions contribution in a BEM formulation based on the convolution quadrature method. International Journal for Numerical Methods in Engineering, 2006, 67, 417-434.	1.5	20
54	Iterative coupling in fluid-structure interaction: a BEM-FEM based approach. WIT Transactions on Modelling and Simulation, 2006, , .	0.0	0

#	Article	IF	CITATIONS
55	Wave propagation in elastic and poroelastic media in the frequency domain by the boundary element method. WIT Transactions on Modelling and Simulation, 2006, , .	0.0	0
56	A frequency-domain FEM approach based on implicit Green's functions for non-linear dynamic analysis. International Journal of Solids and Structures, 2005, 42, 6003-6014.	1.3	13
57	A time domain FEM approach based on implicit Green's functions for non-linear dynamic analysis. International Journal for Numerical Methods in Engineering, 2005, 62, 664-681.	1.5	30
58	Efficient non-linear solid-fluid interaction analysis by an iterative BEM/FEM coupling. International Journal for Numerical Methods in Engineering, 2005, 64, 1416-1431.	1.5	53
59	Non-linear elastodynamic analysis by the BEM: an approach based on the iterative coupling of the D-BEM and TD-BEM formulations. Engineering Analysis With Boundary Elements, 2005, 29, 761-774.	2.0	25
60	Iterative coupling of BEM and FEM for nonlinear dynamic analyses. Computational Mechanics, 2004, 34, 67.	2.2	55
61	Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation. Computational Mechanics, 2004, 34, 387-399.	2.2	24
62	Initial conditions in frequency-domain analysis: the FEM applied to the scalar wave equation. Journal of Sound and Vibration, 2004, 270, 767-780.	2.1	26
63	Compression of time-generated matrices in two-dimensional time-domain elastodynamic BEM analysis. International Journal for Numerical Methods in Engineering, 2004, 61, 1209-1218.	1.5	15
64	On the block wavelet transform applied to the boundary element method. Engineering Analysis With Boundary Elements, 2004, 28, 571-581.	2.0	11
65	Quasi-dual reciprocity boundary-element method for incompressible flow: Application to the diffusive-advective equation. International Journal for Numerical Methods in Engineering, 2003, 58, 1167-1186.	1.5	9
66	An efficient time/frequency domain algorithm for modal analysis of non-linear models discretized by the FEM. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 3731-3745.	3.4	13
67	Scalar wave propagation in 2D: a BEM formulation based on the operational quadrature method. Engineering Analysis With Boundary Elements, 2003, 27, 101-105.	2.0	39
68	A novel hypersingular B.E.M. formulation for three-dimensional potential problems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2003, 25, 364-372.	0.8	0
69	Time-dependent fundamental solution generated by a not impulsive source in the boundary element method analysis of the 2D scalar wave equation. Communications in Numerical Methods in Engineering, 2002, 18, 277-285.	1.3	12
70	Numerical computation of internal stress and velocity in time-domain¶bem formulation for elastodynamics. Computational Mechanics, 2002, 30, 38-47.	2.2	11
71	A more stable scheme for BEM/FEM coupling applied to two-dimensional elastodynamics. Computers and Structures, 2001, 79, 811-823.	2.4	27
72	An efficient BE iterative-solver-based substructuring algorithm for 3D time-harmonic problems in elastodynamics. Engineering Analysis With Boundary Elements, 2001, 25, 795-803.	2.0	11

WEBE MANSUR

#	Article	IF	CITATIONS
73	Time discontinuous linear traction approximation in time-domain BEM: 2-D elastodynamics. International Journal for Numerical Methods in Engineering, 2000, 49, 833-848.	1.5	15
74	TIME-SEGMENTED FREQUENCY-DOMAIN ANALYSIS FOR NON-LINEAR MULTI-DEGREE-OF-FREEDOM STRUCTURAL SYSTEMS. Journal of Sound and Vibration, 2000, 237, 457-475.	2.1	21
75	The ? scheme for time-domain BEM/FEM coupling applied to the 2-D scalar wave equation. Communications in Numerical Methods in Engineering, 2000, 16, 439-448.	1.3	17
76	Stability of Galerkin and collocation time domain boundary element methods as applied to the scalar wave equation. Computers and Structures, 2000, 74, 495-506.	2.4	43
77	Transient dynamic elastoplastic analysis by the time-domain BEM formulation. Engineering Analysis With Boundary Elements, 1999, 23, 479-486.	2.0	16
78	A linear Î, time-marching algorithm in 3D BEM formulation for elastodynamics. Engineering Analysis With Boundary Elements, 1999, 23, 825-833.	2.0	19
79	The linear \hat{I}_{i} method for 2-D elastodynamic BE analysis. Computational Mechanics, 1999, 24, 82-89.	2.2	12
80	Time discontinuous linear traction approximation in time-domain BEM scalar wave propagation analysis. International Journal for Numerical Methods in Engineering, 1998, 42, 667-683.	1.5	34
81	A linear Î, method applied to 2D time-domain BEM. Communications in Numerical Methods in Engineering, 1998, 14, 1171-1179.	1.3	40
82	A novel boundary integral formulation for three-dimensional analysis of thin acoustic barriers over an impedance plane. Journal of the Acoustical Society of America, 1998, 104, 671-678.	0.5	36
83	A DUAL BOUNDARY ELEMENT FORMULATION FOR SOUND PROPAGATION AROUND BARRIERS OVER AN IMPEDANCE PLANE. Journal of Sound and Vibration, 1997, 202, 235-247.	2.1	30
84	A boundary integral formulation for twoâ€dimensional acoustic radiation in a subsonic uniform flow. Journal of the Acoustical Society of America, 1996, 100, 98-107.	0.5	28
85	TIME-DOMAIN BEM ANALYSIS FOR THE 2D SCALAR WAVE EQUATION: INITIAL CONDITIONS CONTRIBUTIONS TO SPACE AND TIME DERIVATIVES. International Journal for Numerical Methods in Engineering, 1996, 39, 2169-2188.	1.5	15
86	Space derivatives in the time domain BEM analysis for the scalar wave equation. Engineering Analysis With Boundary Elements, 1994, 13, 67-74.	2.0	5
87	Multi-level hierarchical preconditioners for boundary element systems. Engineering Analysis With Boundary Elements, 1993, 12, 103-109.	2.0	15
88	Two dimensional transient BEM analysis for the scalar wave equation: Kernels. Engineering Analysis With Boundary Elements, 1993, 12, 283-288.	2.0	21
89	Iterative solution of bem equations by GMRES algorithm. Computers and Structures, 1992, 44, 1249-1253.	2.4	37
90	On BEM singular integrals for two-dimensional potential applications. Engineering Analysis With Boundary Elements, 1992, 9, 185-187.	2.0	7

#	Article	IF	CITATIONS
91	Solution of BEM systems of equations via iterative techniques. International Journal for Numerical Methods in Engineering, 1992, 33, 1823-1841.	1.5	71
92	Efficient time truncation in two-dimensional bem analysis of transient wave propagation problems. Earthquake Engineering and Structural Dynamics, 1992, 21, 51-63.	2.5	24
93	Numerical Simulation of a Cathodically Protected Semisubmersible Platform Using the PROCAT System. Corrosion, 1990, 46, 513-518.	0.5	20
94	On boundary elements for external potential problems. Mechanics Research Communications, 1984, 11, 373-377.	1.0	14
95	Numerical implementation of the boundary element method for two dimensional transient scalar wave propagation problems. Applied Mathematical Modelling, 1982, 6, 299-306.	2.2	75
96	Formulation of the boundary element method for transient problems governed by the scalar wave equation. Applied Mathematical Modelling, 1982, 6, 307-311.	2.2	92
97	Solution of Wave Propagation Problems by Boundary Elements. , 1982, , 171-186.		9