Qinglong You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 2010, 5, 015101.	2.2	829
2	Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dynamics, 2011, 36, 2399-2417.	1.7	428
3	Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. Journal of Geophysical Research, 2008, 113, .	3.3	282
4	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 2019, 6, 796-809.	4.6	271
5	Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Clobal and Planetary Change, 2010, 71, 124-133.	1.6	231
6	Rapid warming in the Tibetan Plateau from observations and <scp>CMIP5</scp> models in recent decades. International Journal of Climatology, 2016, 36, 2660-2670.	1.5	176
7	Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 2020, 201, 103043.	4.0	162
8	Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 2021, 217, 103625.	4.0	157
9	Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophysical Research Letters, 2008, 35, .	1.5	153
10	Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmospheric Research, 2016, 178-179, 521-534.	1.8	152
11	A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dynamics, 2017, 48, 3975-3989.	1.7	147
12	Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dynamics, 2015, 45, 791-806.	1.7	145
13	Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 2013, 33, 1337-1347.	1.5	133
14	Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews, 2020, 210, 103349.	4.0	132
15	Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. , 2019, , 57-97.		125
16	Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmospheric Research, 2018, 210, 1-14.	1.8	110
17	Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Global and Planetary Change, 2010, 72, 11-24.	1.6	109
18	Climate-related flood risks and urban responses in the Pearl River Delta, China. Regional Environmental Change, 2015, 15, 379-391.	1.4	102

#	Article	IF	CITATIONS
19	Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics, 2021, 57, 17-35.	1.7	91
20	Climate change over the Yarlung Zangbo River Basin during 1961–2005. Journal of Chinese Geography, 2007, 17, 409-420.	1.5	88
21	Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China. Journal of Hydrology, 2017, 551, 162-176.	2.3	76
22	Spatiotemporal Temperature Variability over the Tibetan Plateau: Altitudinal Dependence Associated with the Global Warming Hiatus. Journal of Climate, 2017, 30, 969-984.	1.2	73
23	Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Climate Dynamics, 2018, 51, 355-369.	1.7	68
24	From brightening to dimming in sunshine duration over the eastern and central Tibetan Plateau (1961–2005). Theoretical and Applied Climatology, 2010, 101, 445-457.	1.3	66
25	Concurrent droughts and hot extremes in northwest China from 1961 to 2017. International Journal of Climatology, 2019, 39, 2186-2196.	1.5	65
26	Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. International Journal of Climatology, 2014, 34, 1873-1882.	1.5	63
27	Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations. Climate Dynamics, 2013, 40, 2073-2086.	1.7	61
28	Observed changes in maximum and minimum temperatures over China- Pakistan economic corridor during 1980–2016. Atmospheric Research, 2019, 216, 37-51.	1.8	59
29	Evaluation of Downscaled CMIP5 Coupled with VIC Model for Flash Drought Simulation in a Humid Subtropical Basin, China. Journal of Climate, 2018, 31, 1075-1090.	1.2	55
30	Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties. Journal of Climate, 2021, 34, 4871-4892.	1.2	55
31	Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 2020, 192, 103261.	1.6	54
32	Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theoretical and Applied Climatology, 2012, 109, 485-496.	1.3	53
33	Winter temperature extremes in China and their possible causes. International Journal of Climatology, 2013, 33, 1444-1455.	1.5	51
34	Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5°C and 2°C. Climate Dynamics, 2019, 53, 2047-2060.	1.7	50
35	Short-term concurrent drought and heatwave frequency with 1.5 and 2.0°C global warming in humid subtropical basins: a case study in the Gan River Basin, China. Climate Dynamics, 2019, 52, 4621-4641.	1.7	49
36	Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmospheric Research, 2019, 218, 364-371.	1.8	47

#	Article	IF	CITATIONS
37	Analysis of dry/wet conditions in the Gan River Basin, China, and their association with large-scale atmospheric circulation. Global and Planetary Change, 2015, 133, 309-317.	1.6	46
38	Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. International Journal of Climatology, 2016, 36, 2633-2643.	1.5	46
39	Projected trends in mean, maximum, and minimum surface temperature in China from simulations. Global and Planetary Change, 2014, 112, 53-63.	1.6	44
40	Daytime and nighttime heat wave characteristics based on multiple indices over the China–Pakistan economic corridor. Climate Dynamics, 2019, 53, 6329-6349.	1.7	43
41	Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Climate Dynamics, 2020, 55, 2405-2419.	1.7	42
42	Can temperature extremes in China be calculated from reanalysis?. Global and Planetary Change, 2013, 111, 268-279.	1.6	41
43	Observed changes in temperature extremes over China–Pakistan Economic Corridor during 1980–2016. International Journal of Climatology, 2019, 39, 1457-1475.	1.5	40
44	Future Population Exposure to Daytime and Nighttime Heat Waves in South Asia. Earth's Future, 2022, 10, .	2.4	39
45	Revisiting the Relationship between Observed Warming and Surface Pressure in the Tibetan Plateau. Journal of Climate, 2017, 30, 1721-1737.	1.2	38
46	Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3610-3621.	1.2	37
47	Effect of Indian Ocean SST on Tibetan Plateau Precipitation in the Early Rainy Season. Journal of Climate, 2017, 30, 8973-8985.	1.2	36
48	How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau?. Climate Dynamics, 2019, 53, 353-370.	1.7	36
49	Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 2022, 268, 105998.	1.8	36
50	Comparison of NCEP/NCAR and ERA-40 total cloud cover with surface observations over the Tibetan Plateau. International Journal of Climatology, 2014, 34, 2529-2537.	1.5	33
51	Present and projected degree days in China from observation, reanalysis and simulations. Climate Dynamics, 2014, 43, 1449-1462.	1.7	33
52	Observed changes in heat waves with different severities in China during 1961–2015. Theoretical and Applied Climatology, 2020, 141, 1529-1540.	1.3	33
53	Evaluation of CMIP5 models and projected changes in temperatures over South Asia under global warming of 1.5 oC, 2 oC, and 3 oC. Atmospheric Research, 2020, 246, 105122.	1.8	33
54	Impact of large-scale circulation on the water vapour balance of the Tibetan Plateau in summer. International Journal of Climatology, 2016, 36, 4213-4221.	1.5	29

#	Article	IF	CITATIONS
55	Changes in cloud amount over the Tibetan Plateau and impacts of large-scale circulation. Atmospheric Research, 2021, 249, 105332.	1.8	21
56	Decrease in light precipitation events in Huai River Eco-economic Corridor, a climate transitional zone in eastern China. Atmospheric Research, 2019, 226, 240-254.	1.8	18
57	Projected Changes in Snow Water Equivalent over the Tibetan Plateau under Global Warming of 1.5° and 2°C. Journal of Climate, 2020, 33, 5141-5154.	1.2	18
58	Characteristics and causes of surface wind speed variations in Northwest China from 1979 to 2019. Atmospheric Research, 2021, 254, 105527.	1.8	17
59	The influence of the Asian summer monsoon onset on the northward movement of the South Asian high towards the Tibetan Plateau and its thermodynamic mechanism. International Journal of Climatology, 2018, 38, 543-553.	1.5	16
60	Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1978-1989.	1.0	15
61	Change in the heatwave statistical characteristics over China during the climate warming slowdown. Atmospheric Research, 2021, 247, 105152.	1.8	15
62	Climate change scenarios for Tibetan Plateau summer precipitation based on canonical correlation analysis. International Journal of Climatology, 2017, 37, 1310-1321.	1.5	14
63	The Warming of the Tibetan Plateau in Response to Transient and Stabilized 2.0°C/1.5°C Global Warming Targets. Advances in Atmospheric Sciences, 2022, 39, 1198-1206.	1.9	14
64	Topâ€ofâ€Atmosphere Radiation Budget and Cloud Radiative Effects Over the Tibetan Plateau and Adjacent Monsoon Regions From CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034345.	1.2	13
65	Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method. Meteorology and Atmospheric Physics, 2015, 127, 467-479.	0.9	12
66	Interannual variation of the northward movement of the South Asian High towards the Tibetan Plateau and its relation to the Asian Summer Monsoon onset. Atmospheric Research, 2018, 213, 381-388.	1.8	12
67	Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters, 2022, 17, 044068.	2.2	11
68	Fingerprints of Anthropogenic Influences on Vegetation Change Over the Tibetan Plateau From an Ecohydrological Diagnosis. Geophysical Research Letters, 2020, 47, e2020GL087842.	1.5	10
69	Changes and uncertainties of surface mean temperature over China under global warming of 1.5 and 2°C. International Journal of Climatology, 2021, 41, E410.	1.5	8
70	Surface pressure and elevation correction from observation and multiple reanalyses over the Tibetan Plateau. Climate Dynamics, 2019, 53, 5893-5908.	1.7	7
71	Trends in upper tropospheric water vapour over the Tibetan Plateau from remote sensing. International Journal of Climatology, 2016, 36, 4862-4872.	1.5	5
72	Detecting primary precursors of January surface air temperature anomalies in China. Journal of Meteorological Research, 2017, 31, 1096-1108.	0.9	5

#	Article	IF	CITATIONS
73	Climatology and trend of tourism climate index over China during 1979–2020. Atmospheric Research, 2022, 277, 106321.	1.8	4
74	Poleward expansion of the tropical belt derived from upper tropospheric water vapour. International Journal of Climatology, 2015, 35, 2237-2242.	1.5	3
75	Highâ€quality sea surface temperature measurements along coast of the Bohai and Yellow Seas in China and their longâ€ŧerm trends during 1960–2012. International Journal of Climatology, 2020, 40, 63-76.	1.5	3
76	Increasing cloud water resource in a warming world. Environmental Research Letters, 2021, 16, 124067.	2.2	3
77	Cloud Water Resource over the Asian water tower in recent decades. Atmospheric Research, 2022, 269, 106038.	1.8	3
78	Persistence of Soil Enthalpy Drives the Winter and Summer Climate Connection in the Tibetan Plateau. Geophysical Research Letters, 2022, 49, .	1.5	3
79	CMIP5 climate projections for the Yamzhog Yumco Basin: an environmental testbed for alpine lakes. Theoretical and Applied Climatology, 2021, 143, 795-808.	1.3	2
80	Soil moisture continues declining in North China over the regional warming slowdown of the past 20 years. Journal of Hydrometeorology, 2021, , .	0.7	1
81	Increased ecohydrological drying over terrestrial ecosystems. Atmospheric Research, 2022, 277, 106308.	1.8	0