Kazuteru Nonomura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947454/publications.pdf Version: 2024-02-01

394421 395702 2,387 33 19 33 citations g-index h-index papers 33 33 33 3818 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. Journal of Organic Chemistry, 2007, 72, 9550-9556.	3.2	576
2	How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes. Langmuir, 2010, 26, 2592-2598.	3.5	359
3	Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today, 2014, 17, 16-23.	14.2	349
4	Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 2004, , 400-401.	4.1	141
5	Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 2015, 6, 8834.	12.8	122
6	Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Scientific Reports, 2015, 5, 11654.	3.3	112
7	A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 16182.	2.8	74
8	Direct light-induced polymerization of cobalt-based redox shuttles: an ultrafast way towards stable dye-sensitized solar cells. Chemical Communications, 2015, 51, 16308-16311.	4.1	73
9	Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization. ACS Applied Materials & Interfaces, 2016, 8, 32797-32804.	8.0	67
10	Photoelectrochemical Kinetics of Eosin Y-Sensitized Zinc Oxide Films Investigated by Scanning Electrochemical Microscopy. Chemistry - A European Journal, 2006, 12, 5832-5839.	3.3	63
11	Nanoclay Gelation Approach toward Improved Dye-Sensitized Solar Cell Efficiencies: An Investigation of Charge Transport and Shift in the TiO ₂ Conduction Band. ACS Applied Materials & Interfaces, 2013, 5, 444-450.	8.0	49
12	Influence of 4-tert-Butylpyridine in DSCs with Coll/III Redox Mediator. Journal of Physical Chemistry C, 2013, 117, 15515-15522.	3.1	42
13	Effect of Cation on Dye Regeneration Kinetics of N719-Sensitized TiO2 Films in Acetonitrile-Based and Ionic-Liquid-Based Electrolytes Investigated by Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2012, 116, 4316-4323.	3.1	39
14	Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED. Electrochimica Acta, 2009, 55, 458-464.	5.2	38
15	One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties. Electrochimica Acta, 2003, 48, 3071-3078.	5.2	33
16	Organic chromophore-sensitized ZnO solar cells: Electrolyte-dependent dye desorption and band-edge shifts. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 159-163.	3.9	26
17	Trends in patent applications for dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 7376.	30.8	26
18	Effect of the Preparation Procedure on the Morphology of Thin TiO ₂ Films and Their Device Performance in Small-Molecule Bilayer Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 5997-6004.	8.0	25

Kazuteru Nonomura

#	Article	IF	CITATIONS
19	Photovoltage enhancement from cyanobiphenyl liquid crystals and 4-tert-butylpyridine in Co(ii/iii) mediated dye-sensitized solar cells. Chemical Communications, 2013, 49, 9101.	4.1	20
20	Reducing Massâ€Transport Limitations in Cobaltâ€Electrolyteâ€Based Dyeâ€5ensitized Solar Cells by Photoanode Modification. ChemPhysChem, 2014, 15, 1216-1221.	2.1	20
21	Diverging surface reactions at TiO ₂ - or ZnO-based photoanodes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 13047-13057.	2.8	20
22	Zinc Phthalocyanine Conjugated Dimers as Efficient Dopantâ€Free Hole Transporting Materials in Perovskite Solar Cells. ChemPhotoChem, 2020, 4, 307-314.	3.0	19
23	Hybrid thin films of ZnO with porphyrins and phthalocyanines prepared by one-step electrodeposition. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1366-1375.	0.8	15
24	Decoupling light absorption and charge transport properties in near IR-sensitized Fe2O3 regenerative cells. Energy and Environmental Science, 2013, 6, 3280.	30.8	14
25	3,4-Ethylenedioxythiophene-based cobalt complex: an efficient co-mediator in dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) counter-electrode. Electrochimica Acta, 2015, 179, 237-240.	5.2	13
26	Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10729-10738.	10.3	13
27	Defect minimization and morphology optimization in TiO2 nanotube thin films, grown on transparent conducting substrate, for dye synthesized solar cell application. Thin Solid Films, 2012, 522, 71-78.	1.8	12
28	Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 8361.	3.3	10
29	Blocking the Charge Recombination with Diiodide Radicals by TiO ₂ Compact Layer in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, B3203-B3208.	2.9	10
30	The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thiophen Group. International Journal of Photoenergy, 2009, 2009, 1-9.	2.5	4
31	Nanoparticulate Dye-Semiconductor Hybrid Materials Formed by Electrochemical Self-Assembly as Electrodes in Photoelectrochemical Cells. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 518-530.	1.5	1
32	Infiltration of Spiro-MeOTAD hole transporting material into nanotubular TiO2 electrode for solid-state dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 187, 67-74.	3.5	1
33	Effect of TiO2 Photoanodes Morphology and Dye Structure on Dye-Regeneration Kinetics Investigated by Scanning Electrochemical Microscopy. Electrochem, 2020, 1, 329-343.	3.3	1