Salvador Cardona Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4946862/publications.pdf

Version: 2024-02-01

39 papers 2,131 citations

331670 21 h-index 315739

g-index

44 all docs

44 docs citations

times ranked

44

2223 citing authors

#	Article	IF	CITATIONS
1	Towards peptide-based tunable multistate memristive materials. Physical Chemistry Chemical Physics, 2021, 23, 1802-1810.	2.8	7
2	Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching. Nature Chemistry, 2021, 13, 1101-1109.	13.6	52
3	Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides. Journal of the American Chemical Society, 2020, 142, 17572-17580.	13.7	40
4	Exploiting clock transitions for the chemical design of resilient molecular spin qubits. Chemical Science, 2020, 11, 10718-10728.	7.4	21
5	Spin-crossover iron(<scp>ii</scp>) complex showing thermal hysteresis around room temperature with symmetry breaking and an unusually high <i>T</i> (LIESST) of 120 K. Chemical Communications, 2019, 55, 12227-12230.	4.1	21
6	Exploring the transport properties of equatorially low-coordinated erbium single ion magnets. Journal of Magnetism and Magnetic Materials, 2019, 489, 165455.	2.3	1
7	Theoretical insights on the importance of anchoring vs molecular geometry in magnetic molecules acting as junctions. Journal of Magnetism and Magnetic Materials, 2019, 485, 212-216.	2.3	4
8	Proposal for a Dual Spin Filter Based on [VO(C ₃ 5 ₄ O) ₂] ^{2–} . Journal of Physical Chemistry C, 2018, 122, 6417-6421.	3.1	6
9	Spin dynamics in the single-ion magnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mo>[</mml:mo><mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:math>	row> <mml: 3.2</mml: 	l:mi>Er6
10	Physical Review 8, 2018, 97, . Deciphering the Role of Dipolar Interactions in Magnetic Layered Double Hydroxides. Inorganic Chemistry, 2018, 57, 2013-2022.	4.0	21
11	Vanadyl dithiolate single molecule transistors: the next spintronic frontier?. Dalton Transactions, 2018, 47, 5533-5537.	3.3	10
12	Peptides as Versatile Platforms for Quantum Computing. Journal of Physical Chemistry Letters, 2018, 9, 4522-4526.	4.6	15
13	Design of Magnetic Polyoxometalates for Molecular Spintronics and as Spin Qubits. Advances in Inorganic Chemistry, 2017, 69, 213-249.	1.0	22
14	Theoretical Evaluation of [VIV(α-C3S5)3]2–as Nuclear-Spin-Sensitive Single-Molecule Spin Transistor. Journal of Physical Chemistry Letters, 2017, 8, 3056-3060.	4.6	14
15	Electric Field Generation and Control of Bipartite Quantum Entanglement between Electronic Spins in Mixed Valence Polyoxovanadate [GeV14O40]8–. Inorganic Chemistry, 2017, 56, 9547-9554.	4.0	11
16	Influence of the dipolar interactions on the relative stability in spin crossover systems. Journal of Computational Chemistry, 2017, 38, 224-227.	3.3	3
17	SIMPRE1.2: Considering the hyperfine and quadrupolar couplings and the nuclear spin bath decoherence. Journal of Computational Chemistry, 2016, 37, 1238-1244.	3.3	11
18	Single ion magnets based on lanthanoid polyoxomolybdate complexes. Dalton Transactions, 2016, 45, 16653-16660.	3.3	40

#	Article	IF	CITATIONS
19	Coherence and organisation in lanthanoid complexes: from single ion magnets to spin qubits. Inorganic Chemistry Frontiers, 2016, 3, 568-577.	6.0	39
20	Quantum Error Correction with magnetic molecules. Europhysics Letters, 2015, 110, 33001.	2.0	11
21	Electrically Switchable Magnetic Molecules: Inducing a Magnetic Coupling by Means of an External Electric Field in a Mixedâ€Valence Polyoxovanadate Cluster. Chemistry - A European Journal, 2015, 21, 763-769.	3.3	39
22	Modelling electric field control of the spin state in the mixed-valence polyoxometalate [GeV14O40]8â^. Chemical Communications, 2013, 49, 9621.	4.1	24
23	SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions. Journal of Computational Chemistry, 2013, 34, 1961-1967.	3.3	91
24	Coherent manipulation of spin qubits based on polyoxometalates: the case of the single ion magnet [GdW30P5O110]14a Chemical Communications, 2013, 49, 8922.	4.1	52
25	Modeling the properties of uranium-based single ion magnets. Chemical Science, 2013, 4, 938-946.	7.4	74
26	The Use of Polyoxometalates in the Design of Layer-Like Hybrid Salts Containing Cationic Mn4Single-Molecule Magnets. European Journal of Inorganic Chemistry, 2013, 2013, 1903-1909.	2.0	7
27	Gd-Based Single-Ion Magnets with Tunable Magnetic Anisotropy: Molecular Design of Spin Qubits. Physical Review Letters, 2012, 108, 247213.	7.8	199
28	Rational Design of Single-Ion Magnets and Spin Qubits Based on Mononuclear Lanthanoid Complexes. Inorganic Chemistry, 2012, 51, 12565-12574.	4.0	195
29	Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [HollI(W5O18)2]9â°. Dalton Transactions, 2012, 41, 13697.	3.3	88
30	Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a 5-fold Symmetry: The Series [LnP ₅ W ₃₀ O ₁₁₀] ^{12â€"} (Ln ³⁺ = Tb, Dy, Ho, Er,)	T j.£.7 Qq0 (O 23:c gBT /Ov
31	Fragmenting Gadolinium: Mononuclear Polyoxometalateâ€Based Magnetic Coolers for Ultra‣ow Temperatures. Advanced Materials, 2012, 24, 4301-4305.	21.0	74
32	Self-assembly of an iron(ii)-based M5L6 metallosupramolecular cage. Chemical Communications, 2011, 47, 8235.	4.1	22
33	Assisted-assembly of coordination materials into advanced nanoarchitectures by Dip Pen nanolithography. Chemical Communications, 2011, 47, 5175.	4.1	28
34	MVPACK: A package to calculate energy levels and magnetic properties of high nuclearity mixed valence clusters. Journal of Computational Chemistry, 2010, 31, 1321-1332.	3.3	19
35	Magneto-structural correlations and DFT calculations in two rare tetranuclear copper(II)-clusters with doubly phenoxo and end-on azido bridges: Syntheses, structural variations and EPR studies. Inorganica Chimica Acta, 2010, 363, 3580-3588.	2.4	40
36	Parallel implementation of the MAGPACK package for the analysis of high-nuclearity spin clusters. Computer Physics Communications, 2010, 181, 1929-1940.	7.5	14

#	Article	IF	CITATIONS
37	Spin-lattice relaxation via quantum tunneling in anEr3+-polyoxometalate molecular magnet. Physical Review B, 2010, 82, .	3.2	103
38	$\label{lem:mononuclear} Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates $$ [Ln(W5O18)2]9â^' and $$ [Ln(β2-SiW11O39)2]13â^'(LnIII =) $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	¶∙€TQq0	0 ⁴ 0 ⁵ rgBT /O\
39	Polymerâ€Based Composites for Engineering Organic Memristive Devices. Advanced Electronic Materials, 0, , 2101192.	5.1	2