David Avellaneda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4946830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ crystallization of 0D perovskite derivative Cs3Bi2I9 thin films via ultrasonic spray. Journal of Alloys and Compounds, 2022, 893, 162294.	5.5	11
2	Synthesis of Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films by sulfurization of SnS-Cu layers at a selected temperature and /or Cu layers thickness. Journal of Solid State Chemistry, 2022, 306, 122711.	2.9	12
3	Photodetection and photocatalytic properties of Ag2Bil5 thin films formed by iodization of Ag-Bil3 layers. Surfaces and Interfaces, 2022, 30, 101985.	3.0	3
4	Surface modification of sintered magnesium oxide (MgO) with chromium oxide (Cr2O3) by pulsed laser irradiation in air and liquids. Ceramics International, 2021, 47, 21625-21625.	4.8	3
5	AgSbS2-xSex thin films: Structure, composition, morphology and photodetection properties. Materials Today Communications, 2021, 27, 102362.	1.9	8
6	Effect of copper precursor layer thickness on the properties of preferentially oriented Cu4SnS4 thin films for photovoltaic applications. Optical Materials, 2021, 120, 111423.	3.6	8
7	Development of lead-free Cu2Bil5 rudorffite thin films for visible light photodetector application. Applied Surface Science, 2021, 564, 150438.	6.1	8
8	Monoclinic AgSbS2 thin films for photovoltaic applications: Computation, growth and characterization approaches. Materials Science in Semiconductor Processing, 2021, 135, 106074.	4.0	7
9	In situ incorporation of laser ablated PbS nanoparticles in CH3NH3PbI3 films by spin-dip coating and the subsequent effects on the planar junction CdS/CH3NH3PbI3 solar cells. Applied Surface Science, 2020, 508, 144899.	6.1	12
10	A simple synthesis of ZnO:Co2O3 nanocomposites by pulsed laser irradiation in liquid. Materials Today: Proceedings, 2020, 33, 1444-1452.	1.8	3
11	Effect of wavelengths on the structure, morphology and optoelectronic properties of cadmium sulfide thin films by laser assisted chemical bath deposition. Materials Today: Proceedings, 2020, 33, 1434-1443.	1.8	4
12	Solar cell using spray casted Cs2SnI6 perovskite thin films on chemical bath deposited CdS yielding high open circuit voltage. Solar Energy, 2020, 207, 486-495.	6.1	31
13	Single step deposition of Cs2SnIxCl6-x thin films with uniform morphology, composition and high air stability. Materials Science in Semiconductor Processing, 2020, 115, 105115.	4.0	9
14	CH3NH3PbI3/CdS planar photovoltaic junction by spin-dip coating: Studies on the effects of PbI2 layer thickness and rapid thermal treatments. Solar Energy, 2019, 187, 427-437.	6.1	7
15	SnS2 nanoparticles by liquid phase laser ablation: Effects of laser fluence, temperature and post irradiation on morphology and hydrogen evolution reaction. Applied Surface Science, 2019, 470, 276-288.	6.1	28
16	Thin films of tin sulfides: structure, composition and optoelectronic properties. Materials Research Express, 2019, 6, 016409.	1.6	25
17	Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid. Applied Surface Science, 2018, 435, 1285-1295.	6.1	31
18	Copper antimony sulfide thin films for visible to near infrared photodetector applications. RSC Advances, 2018, 8, 31055-31065.	3.6	45

DAVID AVELLANEDA

#	Article	IF	CITATIONS
19	On the structure and physical properties of methyl ammonium lead iodide perovskite thin films by the two-step deposition method. Materials Chemistry and Physics, 2018, 215, 137-147.	4.0	20
20	Nanostructured SnS ₂ Thin Films from Laser Ablated Nanocolloids: Structure, Morphology, Optoelectronic and Electrochemical Properties. ChemPhysChem, 2018, 19, 2902-2914.	2.1	7
21	Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials. Applied Surface Science, 2017, 405, 183-194.	6.1	37
22	CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application. Solar Energy Materials and Solar Cells, 2017, 164, 19-27.	6.2	77
23	Effects of Liquid Medium and Ablation Wavelength on the Properties of Cadmium Sulfide Nanoparticles Formed by Pulsed‣aser Ablation. ChemPhysChem, 2017, 18, 1035-1046.	2.1	21
24	Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid. Journal of Nanomaterials, 2016, 2016, 1-11.	2.7	33
25	Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 24-29.	0.8	33
26	Tin sulfide nanoparticles by pulsed laser ablation in liquid. Journal of Materials Science: Materials in Electronics, 2016, 27, 6859-6871.	2.2	21
27	Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence. Materials Chemistry and Physics, 2015, 162, 561-570.	4.0	41
28	CdS thin films prepared by laser assisted chemical bath deposition. Applied Surface Science, 2015, 336, 329-334.	6.1	32
29	Heat treatments in chemically deposited SnS thin films and their influence in CdS/SnS photovoltaic structures. Journal of Materials Science: Materials in Electronics, 2015, 26, 5585-5592.	2.2	16
30	CuInGaSe 2 nanoparticles by pulsed laser ablation in liquid medium. Materials Research Bulletin, 2015, 72, 106-115.	5.2	11
31	Thin films of copper antimony sulfide: A photovoltaic absorber material. Materials Research Bulletin, 2015, 61, 215-225.	5.2	60
32	CuSbS2 thin films by heating Sb2S3/Cu layers for PV applications. Journal of Materials Science: Materials in Electronics, 2014, 25, 4356-4362.	2.2	30
33	Characterization of CuInS 2 thin films prepared by chemical bath deposition and their implementation in a solar cell. Thin Solid Films, 2014, 569, 76-80.	1.8	22
34	Photovoltaic structures using AgSb(S x Se1â^'x)2 thin films as absorber. Applied Physics A: Materials Science and Processing, 2014, 116, 2095-2105.	2.3	15
35	AgSb(SxSe1â^'x)2 thin films for solar cell applications. Materials Research Bulletin, 2013, 48, 1939-1945.	5.2	15
36	Modification of structure, morphology and physical properties of tin sulfide thin films by pulsed laser irradiation. Applied Physics A: Materials Science and Processing, 2013, 110, 667-672.	2.3	9

DAVID AVELLANEDA

#	ARTICLE	IF	CITATIONS
37	Modification of optical and electrical properties of chemical bath deposited SnS using O2 plasma treatments. Applied Surface Science, 2013, 275, 273-277.	6.1	12
38	Nanoparticles of antimony sulfide by pulsed laser ablation in liquid media. Journal of Materials Science, 2013, 48, 6445-6453.	3.7	20
39	INDIUM SELENIDE THIN FILMS BY LASER IRRADIATION OF In/Se LAYERED STRUCTURE. Surface Review and Letters, 2013, 20, 1350058.	1.1	3
40	In6Se7 thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers. Applied Surface Science, 2012, 258, 5753-5758.	6.1	10
41	Modifications in SnS thin films by plasma treatments. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 351-356.	1.4	14
42	Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments. Thin Solid Films, 2011, 519, 7587-7591.	1.8	17
43	Copper Indium Diselenide thin films using a hybrid method of chemical bath deposition and thermal evaporation. Materials Research Society Symposia Proceedings, 2011, 1324, 121.	0.1	0
44	Cu[sub 2]SnS[sub 3] and Cu[sub 4]SnS[sub 4] Thin Films via Chemical Deposition for Photovoltaic Application. Journal of the Electrochemical Society, 2010, 157, D346.	2.9	184
45	Chemically and Electrochemically Deposited Thin Films of Tin Sulfide for Photovoltaic Structures. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	5
46	Photovoltaic structures using chemically deposited tin sulfide thin films. Thin Solid Films, 2009, 517, 2500-2502.	1.8	90
47	Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition. Journal of the Electrochemical Society, 2008, 155, D517.	2.9	134
48	Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells. Thin Solid Films, 2007, 515, 5771-5776.	1.8	162