Fernando Garcia-Arenal Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4946195/publications.pdf

Version: 2024-02-01

84 papers 5,568 citations

41 h-index 71 g-index

86 all docs 86 docs citations

86 times ranked 3049 citing authors

#	Article	IF	Citations
1	A role of flowering genes in the tolerance of <i>Arabidopsis thaliana</i> to cucumber mosaic virus. Molecular Plant Pathology, 2022, 23, 175-187.	4.2	3
2	Ecological fitting is the forerunner to diversification in a plant virus with broad host range. Journal of Evolutionary Biology, 2021, 34, 1917-1931.	1.7	9
3	Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. Phytopathology, 2021, 111, 32-39.	2.2	22
4	Structuring of plant communities across agricultural landscape mosaics: the importance of connectivity and the scale of effect. Bmc Ecology and Evolution, 2021, 21, 173.	1.6	6
5	Trends and gaps in forecasting plant virus disease risk. Annals of Applied Biology, 2020, 176, 102-108.	2.5	16
6	Tolerance of Plants to Pathogens: A Unifying View. Annual Review of Phytopathology, 2020, 58, 77-96.	7.8	52
7	Coexistence of nestedness and modularity in host–pathogen infection networks. Nature Ecology and Evolution, 2020, 4, 568-577.	7.8	43
8	Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathogens, 2019, 15, e1007810.	4.7	35
9	Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annual Review of Virology, 2019, 6, 411-433.	6.7	102
10	Evolution of plant–virus interactions: host range and virus emergence. Current Opinion in Virology, 2019, 34, 50-55.	5.4	51
11	Coinfection Organizes Epidemiological Networks of Viruses and Hosts and Reveals Hubs of Transmission. Phytopathology, 2019, 109, 1003-1010.	2.2	23
12	Population Genomics of Plant Viruses. Population Genomics, 2018, , 233-265.	0.5	19
13	Effective tolerance based on resource reallocation is a virusâ€specific defence in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2018, 19, 1454-1465.	4.2	46
14	Analysis of Fitness Trade-Offs in the Host Range Expansion of an RNA Virus, Tobacco Mild Green Mosaic Virus. Journal of Virology, 2018, 92, .	3.4	17
15	Description and genetic variation of a distinct species of <i>Potyvirus</i> infecting saffron (<scp><i>Crocus sativus</i> cp> L.) plants in major production regions in Iran. Annals of Applied Biology, 2018, 173, 233-242.</scp>	2.5	10
16	Tobamoviruses as Models for the Study of Virus Evolution. Advances in Virus Research, 2018, 102, 89-117.	2.1	14
17	Tolerance to Plant Pathogens: Theory and Experimental Evidence. International Journal of Molecular Sciences, 2018, 19, 810.	4.1	84
18	Ecological Complexity in Plant Virus Host Range Evolution. Advances in Virus Research, 2018, 101, 293-339.	2.1	41

#	Article	IF	CITATIONS
19	Environmental heterogeneity and the evolution of plant-virus interactions: Viruses in wild pepper populations. Virus Research, 2017, 241, 68-76.	2.2	34
20	Pleiotropic Effects of Resistance-Breaking Mutations on Particle Stability Provide Insight into Life History Evolution of a Plant RNA Virus. Journal of Virology, 2017, 91, .	3.4	12
21	Scale dependencies and generalism in host use shape virus prevalence. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172066.	2.6	29
22	Origin and Evolution of Satellites. , 2017, , 605-614.		2
23	Environment and host genotype determine the outcome of a plant–virus interaction: from antagonism to mutualism. New Phytologist, 2016, 209, 812-822.	7.3	63
24	Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection. Journal of Virology, 2016, 90, 9128-9137.	3.4	32
25	Environment and evolution modulate plant virus pathogenesis. Current Opinion in Virology, 2016, 17, 50-56.	5.4	45
26	RNA Silencing May Play a Role in but Is Not the Only Determinant of the Multiplicity of Infection. Journal of Virology, 2016, 90, 553-561.	3.4	10
27	Aphid vector population density determines the emergence of necrogenic satellite RNAs in populations of cucumber mosaic virus. Journal of General Virology, 2016, 97, 1453-1457.	2.9	6
28	Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genetics, 2016, 12, e1006214.	3.5	20
29	Evolution of the Interactions of Viruses with Their Plant Hosts. , 2016, , 127-154.		9
30	The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico. Virus Evolution, 2015, 1, vev004.	4.9	39
31	Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years. Virus Evolution, 2015, 1, vev019.	4.9	43
32	Ecosystem simplification, biodiversity loss and plant virus emergence. Current Opinion in Virology, 2015, 10, 56-62.	5.4	119
33	Editorial overview: Emerging viruses: interspecies transmission. Current Opinion in Virology, 2015, 10, v-viii.	5.4	2
34	A critical evaluation of whether recombination in virusâ€resistant transgenic plants will lead to the emergence of novel viral diseases. New Phytologist, 2015, 207, 536-541.	7.3	16
35	Modelling Infection Dynamics and Evolution of Viruses in Plant Populations. Trends in Mathematics, 2015, , 89-93.	0.1	O
36	Evolution and Emergence of Plant Viruses. Advances in Virus Research, 2014, 88, 161-191.	2.1	167

#	Article	IF	CITATIONS
37	The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus. PLoS Pathogens, 2014, 10, e1004492.	4.7	45
38	Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host. PLoS Pathogens, 2014, 10, e1004293.	4.7	65
39	Host Resistance Selects for Traits Unrelated to Resistance-Breaking That Affect Fitness in a Plant Virus. Molecular Biology and Evolution, 2014, 31, 928-939.	8.9	16
40	Ecological and Genetic Determinants of Pepino Mosaic Virus Emergence. Journal of Virology, 2014, 88, 3359-3368.	3.4	48
41	Virulence evolution of a generalist plant virus in a heterogeneous host system. Evolutionary Applications, 2013, 6, 875-890.	3.1	24
42	Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System. PLoS Pathogens, 2012, 8, e1002796.	4.7	105
43	Impact of Human Management on the Genetic Variation of Wild Pepper, Capsicum annuum var. glabriusculum. PLoS ONE, 2011, 6, e28715.	2.5	40
44	Cucumber mosaic virus satellite RNAs that induce similar symptoms in melon plants show large differences in fitness. Journal of General Virology, 2011, 92, 1930-1938.	2.9	28
45	Contact Transmission of Tobacco Mosaic Virus: a Quantitative Analysis of Parameters Relevant for Virus Evolution. Journal of Virology, 2011, 85, 4974-4981.	3.4	49
46	Rapid Genetic Diversification and High Fitness Penalties Associated with Pathogenicity Evolution in a Plant Virus. Molecular Biology and Evolution, 2011, 28, 1425-1437.	8.9	67
47	Genomic and biological characterization of chiltepÃn yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico. Archives of Virology, 2010, 155, 675-684.	2.1	15
48	The Coevolution of Plants and Viruses. Advances in Virus Research, 2010, 76, 1-32.	2.1	83
49	<i>Arabidopsis thaliana</i> as a model for the study of plant–virus co-evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1983-1995.	4.0	92
50	Differential Tolerance to Direct and Indirect Density-Dependent Costs of Viral Infection in Arabidopsis thaliana. PLoS Pathogens, 2009, 5, e1000531.	4.7	33
51	The Multiplicity of Infection of a Plant Virus Varies during Colonization of Its Eukaryotic Host. Journal of Virology, 2009, 83, 7487-7494.	3.4	82
52	The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 2008, 9, 369-384.	4.2	209
53	Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana. PLoS Pathogens, 2008, 4, e1000124.	4.7	68
54	Estimation of the Effective Number of Founders That Initiate an Infection after Aphid Transmission of a Multipartite Plant Virus. Journal of Virology, 2008, 82, 12416-12421.	3.4	102

#	Article	IF	CITATIONS
55	More About Plant Virus Evolution: Past, Present, and Future. , 2008, , 229-250.		26
56	Questions and Concepts in Plant Virus Evolution: a Historical Perspective., 2008, , 1-14.		3
57	Constraints to Genetic Exchange Support Gene Coadaptation in a Tripartite RNA Virus. PLoS Pathogens, 2007, 3, e8.	4.7	64
58	The Relationship of Within-Host Multiplication and Virulence in a Plant-Virus System. PLoS ONE, 2007, 2, e786.	2.5	69
59	Association and Host Selectivity in Multi-Host Pathogens. PLoS ONE, 2006, 1, e41.	2.5	86
60	Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology, 2005, 332, 359-368.	2.4	116
61	An Analysis of Host Adaptation and Its Relationship with Virulence in Cucumber mosaic virus. Phytopathology, 2005, 95, 827-833.	2.2	40
62	Population Dynamics of Cucumber mosaic virus in Melon Crops and in Weeds in Central Spain. Phytopathology, 2004, 94, 992-998.	2.2	46
63	Epidemics of Aphid-transmitted Viruses in Melon Crops in Spain. European Journal of Plant Pathology, 2003, 109, 129-138.	1.7	42
64	An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 2003, 93, 941-952.	2.2	190
65	Variation and evolution of plant virus populations. International Microbiology, 2003, 6, 225-232.	2.4	201
66	THE EVOLUTION OF VIRULENCE IN A PLANT VIRUS. Evolution; International Journal of Organic Evolution, 2003, 57, 755-765.	2.3	63
67	Cucumoviruses. Advances in Virus Research, 2003, 62, 241-323.	2.1	464
68	Estimation of Population Bottlenecks during Systemic Movement of Tobacco Mosaic Virus in Tobacco Plants. Journal of Virology, 2003, 77, 9906-9911.	3.4	149
69	The Rate and Character of Spontaneous Mutation in an RNA Virus. Genetics, 2002, 162, 1505-1511.	2.9	151
70	VARIABILITY ANDGENETICSTRUCTURE OFPLANTVIRUSPOPULATIONS. Annual Review of Phytopathology, 2001, 39, 157-186.	7.8	574
71	Evolution of Virulence in Natural Populations of the Satellite RNA of Cucumber mosaic virus. Phytopathology, 2000, 90, 480-485.	2.2	63
72	Transmissibility of Cucumber mosaic virus by Aphis gossypii Correlates with Viral Accumulation and Is Affected by the Presence of Its Satellite RNA. Phytopathology, 2000, 90, 1068-1072.	2.2	64

#	Article	IF	CITATIONS
73	Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. Microbiology (United Kingdom), 2000, 81, 1839-1849.	1.8	104
74	Genetic Variability of Natural Populations of Cotton Leaf Curl Geminivirus, a Single-Stranded DNA Virus. Journal of Molecular Evolution, 1999, 49, 672-681.	1.8	89
75	Occurrence, Distribution, and Relative Incidence of Mosaic Viruses Infecting Field-Grown Melon in Spain. Plant Disease, 1998, 82, 979-982.	1.4	79
76	Satellite RNA of Cucumber Mosaic Cucumovirus Spreads Epidemically in Natural Populations of Its Helper Virus. Phytopathology, 1998, 88, 520-524.	2.2	41
77	Contribution of Mutation and RNA Recombination to the Evolution of a Plant Pathogenic RNA. Journal of Molecular Evolution, 1997, 44, 81-88.	1.8	52
78	Genetic Diversity in Tobacco Mild Green Mosaic Tobamovirus Infecting the Wild PlantNicotiana glauca. Virology, 1996, 223, 148-155.	2.4	84
79	In search of the origins of viral genes. , 1995, , 76-90.		11
80	Differential interactions among strains of tomato aspermy virus and satellite RNAs of cucumber mosaic virus. Virology, 1992, 186, 475-480.	2.4	44
81	High genetic stability in natural populations of the plant RNA virus tobacco mild green mosaic virus. Journal of Molecular Evolution, 1991, 32, 328-332.	1.8	64
82	The complete nucleotide sequence of the genomic RNA of the tobamovirus tobacco mild green mosaic virus. Virology, 1990, 177, 553-558.	2.4	87
83	Genetic heterogeneity of the RNA genome population of the plant virus U5-TMV. Virology, 1989, 170, 418-423.	2.4	45
84	Strains and mutants of tobacco mosaic virus are both found in virus derived from single-lesion-passaged inoculum. Virology, 1984, 132, 131-137.	2.4	44