
Xiong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4946102/publications.pdf Version: 2024-02-01

XIONC THENC

#	Article	IF	CITATIONS
1	Short- and long-term effects of decabromodiphenyl ether (BDE-209) on sediment denitrification using a semi-continuous microcosm. Environmental Pollution, 2022, 293, 118589.	3.7	5
2	Long-term exposure to zinc oxide nanoparticles improves PAOs function in enhanced biological phosphorus removal. Environmental Technology (United Kingdom), 2022, , 1-21.	1.2	0
3	Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. Bioresource Technology, 2022, 348, 126789.	4.8	10
4	Extracellular DNA plays a key role in the structural stability of sulfide-based denitrifying biofilms. Science of the Total Environment, 2022, 838, 155822.	3.9	6
5	Nitric Oxide: A Neglected Driver for the Conjugative Transfer of Antibiotic Resistance Genes among Wastewater Microbiota. Environmental Science & Technology, 2022, 56, 6466-6478.	4.6	20
6	H ₂ -Based Membrane Catalyst-Film Reactor (H ₂ -MCfR) Loaded with Palladium for Removing Oxidized Contaminants in Water. Environmental Science & Technology, 2021, 55, 7082-7093.	4.6	27
7	Anaerobic fermentation metabolism of Moorella thermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity. Water Research, 2021, 197, 117081.	5.3	27
8	Carbon nanotubes mitigate copper-oxide nanoparticles-induced inhibition to acidogenic metabolism of Propionibacterium acidipropionici by regulating carbon source utilization. Bioresource Technology, 2021, 330, 125003.	4.8	9
9	Identification of CO2 induces oxidative stress to change bacterial surface properties. Chemosphere, 2021, 277, 130336.	4.2	7
10	lonic copper strengthens the toxicity of tetrabromobisphenol A (TBBPA) to denitrification by decreasing substrate transport and electron transfer. Journal of Hazardous Materials, 2021, 416, 126203.	6.5	8
11	Joint effects of carbon nanotubes and copper oxide nanoparticles on fermentation metabolism towards Saccharofermentans acetigenes: Enhancing environmental adaptability and transcriptional expression. Bioresource Technology, 2021, 336, 125318.	4.8	19
12	Shewanella oneidensis MR-1 improving denitrification performance via influencing electron competition and distribution. Bioresource Technology Reports, 2020, 10, 100381.	1.5	3
13	Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process. Water Research, 2020, 169, 115242.	5.3	98
14	Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. Water Research, 2020, 180, 115916.	5.3	70
15	Tetracycline-induced effects on the nitrogen transformations in sediments: Roles of adsorption behavior and bacterial activity. Science of the Total Environment, 2019, 695, 133811.	3.9	35
16	CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction. Environmental Science: Nano, 2019, 6, 528-539.	2.2	69
17	Fate of sulfonamide resistance genes during sludge anaerobic fermentation: Roles of sludge components and fermentation pHs. Bioresource Technology, 2019, 289, 121636.	4.8	14
18	Tetrabromobisphenol A (TBBPA) inhibits denitrification via regulating carbon metabolism to decrease electron donation and bacterial population. Water Research, 2019, 162, 190-199.	5.3	70

XIONG ZHENG

#	Article	IF	CITATIONS
19	Anaerobic biodegradation of catechol by sediment microorganisms: Interactive roles of N reduction and S cycling. Journal of Cleaner Production, 2019, 230, 80-89.	4.6	14
20	More than sulfidation: Roles of biogenic sulfide in attenuating the impacts of CuO nanoparticle on antibiotic resistance genes during sludge anaerobic digestion. Water Research, 2019, 158, 1-10.	5.3	28
21	Evaluation of Zinc Oxide Nanoparticles-Induced Effects on Nitrogen and Phosphorus Removal from Real and Synthetic Municipal Wastewater. Industrial & Engineering Chemistry Research, 2019, 58, 7929-7936.	1.8	16
22	Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus. Water Research, 2019, 158, 383-391.	5.3	48
23	Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism. Science of the Total Environment, 2018, 627, 896-904.	3.9	40
24	Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification. Chemical Engineering Journal, 2018, 344, 556-564.	6.6	74
25	Global transcriptional responses of denitrifying bacteria to functionalized single-walled carbon nanotubes revealed by weighted gene-coexpression network analysis. Science of the Total Environment, 2018, 613-614, 1240-1249.	3.9	26
26	Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. Journal of Hazardous Materials, 2018, 344, 291-298.	6.5	58
27	Insight into a direct carbon dioxide effect on denitrification and denitrifying bacterial communities in estuarine sediment. Science of the Total Environment, 2018, 643, 1074-1083.	3.9	18
28	New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process. Applied Energy, 2017, 196, 190-198.	5.1	51
29	Using Mixed Sludge-derived Short-chain Fatty Acids Enhances Power Generation of Microbial Fuel Cells. Energy Procedia, 2017, 105, 1282-1288.	1.8	20
30	Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors. Science of the Total Environment, 2017, 580, 380-387.	3.9	65
31	Using sludge fermentation liquid to reduce the inhibitory effect of copper oxide nanoparticles on municipal wastewater biological nutrient removal. Water Research, 2016, 99, 216-224.	5.3	27
32	Effect of CO ₂ on Microbial Denitrification via Inhibiting Electron Transport and Consumption. Environmental Science & Technology, 2016, 50, 9915-9922.	4.6	186
33	Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer. Bioresource Technology, 2016, 218, 1284-1289.	4.8	110
34	Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports, 2016, 6, 27748.	1.6	11
35	Effect of fulvic acids with different characteristics on biological denitrification. RSC Advances, 2016, 6, 14993-15001.	1.7	36
36	The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption. Applied Microbiology and Biotechnology, 2016, 100, 5607-5618.	1.7	120

3

XIONG ZHENG

#	Article	IF	CITATIONS
37	Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 2015, 5, 15824.	1.6	94
38	Long-term effects of engineered nanoparticles on enzyme activity and functional bacteria in wastewater treatment plants. Water Science and Technology, 2015, 72, 99-105.	1.2	20
39	Using cassava distiller's dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater. Applied Microbiology and Biotechnology, 2015, 99, 2839-2847.	1.7	17
40	Hydroxyl functionalization of single-walled carbon nanotubes causes inhibition to the bacterial denitrification process. Chemical Engineering Journal, 2015, 279, 47-55.	6.6	72
41	Effect of Humic Acids with Different Characteristics on Fermentative Short-Chain Fatty Acids Production from Waste Activated Sludge. Environmental Science & Technology, 2015, 49, 4929-4936.	4.6	159
42	Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Research, 2015, 70, 148-157.	5.3	116
43	Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 913-21.	0.9	3
44	Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge. PLoS ONE, 2014, 9, e92871.	1.1	38
45	Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor. Chemosphere, 2014, 109, 56-63.	4.2	38
46	Chronic Response of Waste Activated Sludge Fermentation to Titanium Dioxide Nanoparticles. Chinese Journal of Chemical Engineering, 2014, 22, 1162-1167.	1.7	14
47	The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Advances, 2014, 4, 45953-45959.	1.7	25
48	Zinc Oxide Nanoparticles Cause Inhibition of Microbial Denitrification by Affecting Transcriptional Regulation and Enzyme Activity. Environmental Science & Technology, 2014, 48, 13800-13807.	4.6	148
49	How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production. Water Research, 2014, 63, 125-134.	5.3	40
50	Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA. Biochemical Engineering Journal, 2014, 84, 28-35.	1.8	48
51	Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity. Scientific Reports, 2014, 4, 5653.	1.6	38
52	Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 2013, 47, 615-622.	5.3	74
53	Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH. Bioresource Technology, 2013, 140, 97-102.	4.8	61
54	Pyrosequencing Reveals the Key Microorganisms Involved in Sludge Alkaline Fermentation for Efficient Short-Chain Fatty Acids Production. Environmental Science & Technology, 2013, 47, 4262-4268.	4.6	199

XIONG ZHENG

#	Article	IF	CITATIONS
55	Long-term performance of enhanced biological phosphorus removal with increasing concentrations of silver nanoparticles and ions. RSC Advances, 2013, 3, 9835.	1.7	31
56	Short-Chain Fatty Acid Production from Different Biological Phosphorus Removal Sludges: The Influences of PHA and Gram-Staining Bacteria. Environmental Science & Technology, 2013, 47, 2688-2695.	4.6	89
57	Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici. Water Science and Technology, 2013, 68, 2061-2066.	1.2	15
58	Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge. Water Science and Technology, 2013, 68, 916-922.	1.2	5
59	Long-Term Effects of Copper Nanoparticles on Wastewater Biological Nutrient Removal and N ₂ O Generation in the Activated Sludge Process. Environmental Science & Technology, 2012, 46, 12452-12458.	4.6	143
60	Acute and Chronic Responses of Activated Sludge Viability and Performance to Silica Nanoparticles. Environmental Science & Technology, 2012, 46, 7182-7188.	4.6	66
61	Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 2012, 46, 4379-4386.	5.3	88
62	The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. Journal of Hazardous Materials, 2012, 239-240, 88-94.	6.5	81
63	Response of Anaerobic Granular Sludge to a Shock Load of Zinc Oxide Nanoparticles during Biological Wastewater Treatment. Environmental Science & Technology, 2012, 46, 5997-6003.	4.6	188
64	Long-Term Effects of Titanium Dioxide Nanoparticles on Nitrogen and Phosphorus Removal from Wastewater and Bacterial Community Shift in Activated Sludge. Environmental Science & Technology, 2011, 45, 7284-7290.	4.6	205
65	Effects of ZnO Nanoparticles on Wastewater Biological Nitrogen and Phosphorus Removal. Environmental Science & Technology, 2011, 45, 2826-2832.	4.6	356
66	Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology. Environmental Science & Technology, 2010, 44, 9343-9348.	4.6	99
67	The investigation of effect of organic carbon sources addition in anaerobic–aerobic (low dissolved) Tj ETQq1 2009, 100, 2515-2520.	1 0.78431 4.8	4 rgBT /Over 43
68	Enhancement of Waste Activated Sludge Protein Conversion and Volatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentation by Carbohydrate Substrate Addition: The Effect of pH. Environmental Science & Technology, 2009, 43, 4373-4380.	4.6	391
69	Efficient Polyhydroxyalkanoates Production from a Waste-Activated Sludge Alkaline Fermentation Liquid by Activated Sludge Submitted to the Aerobic Feeding and Discharge Process. Environmental Science & Technology, 2009, 43, 7734-7741.	4.6	143