Laura Masino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945921/publications.pdf

Version: 2024-02-01

30	3,019	22	30
papers	citations	h-index	g-index
30	30	30	4396
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biolayer Interferometry: Protein–RNA Interactions. Methods in Molecular Biology, 2021, 2263, 351-368.	0.9	5
2	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	10.3	107
3	On the mechanism of calciumâ€dependent activation of NADPH oxidase 5 (NOX5). FEBS Journal, 2020, 287, 2486-2503.	4.7	27
4	MutSl ² Stimulates Holliday Junction Resolution by the SMX Complex. Cell Reports, 2020, 33, 108289.	6.4	23
5	A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochemical Journal, 2020, 477, 525-540.	3.7	6
6	A Ubiquitin-Binding Domain that Binds a Structural Fold Distinct from that of Ubiquitin. Structure, 2019, 27, 1316-1325.e6.	3.3	23
7	Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation. ELife, 2019, 8, .	6.0	29
8	Determinants of E2-ubiquitin conjugate recognition by RBR E3 ligases. Scientific Reports, 2018, 8, 68.	3.3	17
9	Rv1460, a SufR homologue, is a repressor of the suf operon in Mycobacterium tuberculosis. PLoS ONE, 2018, 13, e0200145.	2.5	26
10	The Josephin Domain Determines the Morphological and Mechanical Properties of Ataxin-3 Fibrils. Biophysical Journal, 2011, 100, 2033-2042.	0.5	44
11	Functional interactions as a survival strategy against abnormal aggregation. FASEB Journal, 2011, 25, 45-54.	0.5	68
12	Josephin domain of ataxinâ€3 contains two distinct ubiquitinâ€binding sites. Biopolymers, 2009, 91, 1203-1214.	2.4	77
13	EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature Structural and Molecular Biology, 2008, 15, 558-566.	8.2	1,249
14	Pathogenic and Non-pathogenic Polyglutamine Tracts Have Similar Structural Properties: Towards a Length-dependent Toxicity Gradient. Journal of Molecular Biology, 2007, 371, 235-244.	4.2	86
15	The Structure of the C-Terminal KH Domains of KSRP Reveals a Noncanonical Motif Important for mRNA Degradation. Structure, 2007, 15, 485-498.	3.3	97
16	The Interplay between PolyQ and Protein Context Delays Aggregation by Forming a Reservoir of Protofibrils. PLoS ONE, 2006, 1, e111.	2.5	58
17	Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation. Journal of Biomolecular NMR, 2006, 36, 267-277.	2.8	44
18	The solution structure of the Josephin domain of ataxin-3: Structural determinants for molecular recognition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10493-10498.	7.1	176

#	Article	IF	CITATION
19	Bacterial IscU is a well folded and functional single domain protein. FEBS Journal, 2004, 271, 2093-2100.	0.2	40
20	Letter to the Editor: Assignment of the 1H, 13C, and 15N resonances of the Josephin domain of human ataxin-3. Journal of Biomolecular NMR, 2004, 30, 457-458.	2.8	16
21	Characterization of the Structure and the Amyloidogenic Properties of the Josephin Domain of the Polyglutamine-containing Protein Ataxin-3. Journal of Molecular Biology, 2004, 344, 1021-1035.	4.2	117
22	Polyglutamine and Neurodegeneration: Structural Aspects. Protein and Peptide Letters, 2004, 11, 239-248.	0.9	6
23	NEW EMBO MEMBER'S REVIEW: From Alzheimer to Huntington: why is a structural understanding so difficult?. EMBO Journal, 2003, 22, 355-361.	7.8	133
24	Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Letters, 2003, 549, 21-25.	2.8	103
25	Thermal Stability of Calmodulin and Mutants Studied by1Hâ^15N HSQC NMR Measurements of Selectively Labeled [15N]lle Proteins. Biochemistry, 2002, 41, 6850-6859.	2.5	26
26	Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Letters, 2002, 513, 267-272.	2.8	140
27	A structural approach to trinucleotide expansion diseases. Brain Research Bulletin, 2001, 56, 183-189.	3.0	18
28	Enhancement by Mg ²⁺ of domain specificity in Ca ²⁺ â€dependent interactions of calmodulin with target sequences. Protein Science, 2000, 9, 2477-2488.	7.6	51
29	Ligand binding and thermodynamic stability of a multidomain protein, calmodulin. Protein Science, 2000, 9, 1519-1529.	7.6	125
30	Fast Events in Protein Folding: Structural Volume Changes Accompanying the Early Events in the Nâ†'l	0.5	82