List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945823/publications.pdf Version: 2024-02-01

IOHN A MORCAN

#	Article	IF	CITATIONS
1	Diffusion of volatile organics and water in the epicuticular waxes of petunia petal epidermal cells. Plant Journal, 2022, 110, 658-672.	2.8	10
2	Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nature Chemical Biology, 2021, 17, 138-145.	3.9	50
3	Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. Plant Journal, 2021, 108, 737-751.	2.8	12
4	Probing Light-Dependent Regulation of the Calvin Cycle Using a Multi-Omics Approach. Frontiers in Plant Science, 2021, 12, 733122.	1.7	5
5	Electric Pulse Pretreatment for Enhanced Lipid Recovery from Chlorella protothecoides. Bioenergy Research, 2020, 13, 499-506.	2.2	5
6	Metabolic flux analysis of secondary metabolism in plants. Metabolic Engineering Communications, 2020, 10, e00123.	1.9	44
7	Modeling Plant Metabolism: From Network Reconstruction to Mechanistic Models. Annual Review of Plant Biology, 2020, 71, 303-326.	8.6	27
8	Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway. Nature Chemical Biology, 2020, 16, 850-856.	3.9	27
9	Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in <i>Synechocystis</i> sp. Strain PCC 6803. Applied and Environmental Microbiology, 2020, 86, .	1.4	18
10	Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Metabolic Engineering, 2019, 56, 77-84.	3.6	30
11	Natural fumigation as a mechanism for volatile transport between flower organs. Nature Chemical Biology, 2019, 15, 583-588.	3.9	56
12	Cost-Aware Learning for Improved Identifiability with Multiple Experiments. , 2019, , .		0
13	Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nature Communications, 2019, 10, 15.	5.8	103
14	Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria. Cell Reports, 2018, 23, 667-672.	2.9	107
15	A 13C isotope labeling method for the measurement of lignin metabolic flux in Arabidopsis stems. Plant Methods, 2018, 14, 51.	1.9	22
16	Dynamic modeling of subcellular phenylpropanoid metabolism in Arabidopsis lignifying cells. Metabolic Engineering, 2018, 49, 36-46.	3.6	16
17	Targeted Metabolomics of the Phenylpropanoid Pathway in <scp><i>Arabidopsis thaliana</i></scp> using Reversed Phase Liquid Chromatography Coupled with Tandem Mass Spectrometry. Phytochemical Analysis, 2017, 28, 267-276.	1.2	30
18	Plant Volatiles: Going â€~In' but not â€~Out' of Trichome Cavities. Trends in Plant Science. 2017. 22. 930)-938	97

#	Article	IF	CITATIONS
19	Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. Plant Journal, 2017, 92, 939-950.	2.8	24
20	Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science, 2017, 356, 1386-1388.	6.0	202
21	Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS ONE, 2017, 12, e0177292.	1.1	40
22	Editorial overview: Plant biotechnology. Current Opinion in Biotechnology, 2016, 37, 153-154.	3.3	0
23	Rethinking how volatiles are released from plant cells. Trends in Plant Science, 2015, 20, 545-550.	4.3	153
24	The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nature Plants, 2015, 1, .	4.7	119
25	Genetic manipulation of lignocellulosic biomass for bioenergy. Current Opinion in Chemical Biology, 2015, 29, 32-39.	2.8	57
26	Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nature Communications, 2015, 6, 8142.	5.8	76
27	The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytologist, 2014, 204, 661-670.	3.5	44
28	Isotopomer Measurement Techniques in Metabolic Flux Analysis II: Mass Spectrometry. Methods in Molecular Biology, 2014, 1083, 85-108.	0.4	33
29	Isotopically Nonstationary MFA (INST-MFA) of Autotrophic Metabolism. Methods in Molecular Biology, 2014, 1090, 181-210.	0.4	29
30	Simulating Labeling to Estimate Kinetic Parameters for Flux Control Analysis. Methods in Molecular Biology, 2014, 1090, 211-222.	0.4	1
31	Analysis of metabolic flux using dynamic labelling and metabolic modelling. Plant, Cell and Environment, 2013, 36, 1738-1750.	2.8	47
32	Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies. Journal of Experimental Botany, 2012, 63, 2293-2308.	2.4	66
33	Developmental Changes in the Metabolic Network of Snapdragon Flowers. PLoS ONE, 2012, 7, e40381.	1.1	72
34	Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metabolic Engineering, 2011, 13, 656-665.	3.6	307
35	Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess and Biosystems Engineering, 2011, 34, 121-125.	1.7	115
36	Metabolic flux analysis of CHO cell metabolism in the late nonâ€growth phase. Biotechnology and Bioengineering, 2011, 108, 82-92.	1.7	113

#	Article	IF	CITATIONS
37	Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metabolic Engineering, 2011, 13, 150-158.	3.6	66
38	Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast. Bioprocess and Biosystems Engineering, 2010, 33, 863-871.	1.7	17
39	Synthesis of non-natural flavanones and dihydrochalcones in metabolically engineered yeast. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 257-263.	1.8	19
40	A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of <i>Petunia hybrida</i> . Plant Journal, 2010, 62, 64-76.	2.8	59
41	Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Systems Biology, 2009, 3, 4.	3.0	351
42	Systematic development of hybrid cybernetic models: Application to recombinant yeast coâ€consuming glucose and xylose. Biotechnology and Bioengineering, 2009, 103, 984-1002.	1.7	71
43	Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. Journal of Biotechnology, 2009, 142, 233-241.	1.9	33
44	Application of Dynamic Flux Analysis in Plant Metabolic Networks. , 2009, , 285-305.		4
45	Network Stoichiometry. , 2009, , 211-243.		7
46	Integrating cybernetic modeling with pathway analysis provides a dynamic, systemsâ€level description of metabolic control. Biotechnology and Bioengineering, 2008, 100, 542-559.	1.7	72
47	Targeted metabolomic analysis of Escherichia coli by desorption electrospray ionization and extractive electrospray ionization mass spectrometry. Analytical Biochemistry, 2008, 375, 272-281.	1.1	63
48	Expression of a flavonoid glucosyltransferase in yeast for whole-cell biocatalysis. Journal of Biotechnology, 2008, 136, S376.	1.9	0
49	A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry, 2007, 68, 2302-2312.	1.4	93
50	Non-natural cinnamic acid derivatives as substrates of cinnamate 4-hydroxylase. Phytochemistry, 2007, 68, 306-311.	1.4	19
51	High throughput screening of heterologous P450 whole cell activity. Enzyme and Microbial Technology, 2006, 38, 760-764.	1.6	5
52	Flux Balance Analysis of Photoautotrophic Metabolism. Biotechnology Progress, 2005, 21, 1617-1626.	1.3	175
53	Metabolic Engineering of the Phenylpropanoid Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 2962-2969.	1.4	186
54	Production of C35 isoprenoids depends on H2 availability during cultivation of the hyperthermophile Methanococcus jannaschii. Extremophiles, 2004, 8, 13-21.	0.9	12

#	Article	IF	CITATIONS
55	Calculation of theoretical yields in metabolic networks. Biochemistry and Molecular Biology Education, 2004, 32, 314-318.	0.5	7
56	Optimization of an in vivo plant P450 monooxygenase system inSaccharomyces cerevisiae. Biotechnology and Bioengineering, 2004, 85, 130-137.	1.7	43
57	Salt-activation of nonhydrolase enzymes for use in organic solvents. Biotechnology and Bioengineering, 2004, 85, 456-459.	1.7	20
58	Cybernetic modeling of metabolism: towards a framework for rational design of recombinant organisms. Chemical Engineering Science, 2004, 59, 5041-5049.	1.9	5
59	Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of 1,4-benzenedimethanol. Journal of Molecular Catalysis B: Enzymatic, 2002, 18, 147-154.	1.8	31
60	Mathematical Modeling of Plant Metabolic Pathways. Metabolic Engineering, 2002, 4, 80-89.	3.6	123
61	Quantification of Metabolic Flux in Plant Secondary Metabolism by a Biogenetic Organizational Approach. Metabolic Engineering, 2002, 4, 257-262.	3.6	26
62	Parallel Synthesis and Biocatalytic Amplification of a Cross-Conjugated Cyclopentenone Library. ACS Combinatorial Science, 2001, 3, 346-353.	3.3	18
63	Effects of buffered media upon growth and alkaloid production of Catharanthus roseus hairy roots. Applied Microbiology and Biotechnology, 2000, 53, 262-265.	1.7	39
64	Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. Journal of Biotechnology, 2000, 79, 137-145.	1.9	106
65	Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry, 1999, 51, 61-68.	1.4	36
66	Plant â€~hairy root' culture. Current Opinion in Biotechnology, 1999, 10, 151-155.	3.3	239
67	Quantification of metabolites in the indole alkaloid pathways ofCatharanthus roseus: Implications for metabolic engineering. , 1998, 58, 333-338.		57
68	Transient studies of light-adapted cultures of hairy roots ofCatharanthus roseus: Growth and indole alkaloid accumulation. , 1998, 60, 670-678.		29