
Zishu Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945739/publications.pdf Version: 2024-02-01

Ζιςμιι Ρλη

#	Article	IF	CITATIONS
1	Role of the conserved E2 residue G259 in classical swine fever virus production and replication. Virus Research, 2022, 313, 198747.	2.2	2
2	A positively charged surface patch on the pestivirus NS3 protease module plays an important role in modulating NS3 helicase activity and virus production. Archives of Virology, 2021, 166, 1633-1642.	2.1	3
3	(p)ppGpp synthetases are required for the pathogenicity of Salmonella Pullorum in chickens. Microbiological Research, 2021, 245, 126685.	5.3	10
4	Construction and immunological evaluation of hepatitis B virus core virus-like particles containing multiple antigenic peptides of respiratory syncytial virus. Virus Research, 2021, 298, 198410.	2.2	3
5	Chimeric enterovirus 71 virus-like particle displaying conserved coxsackievirus A16 epitopes elicits potent immune responses and protects mice against lethal EV71 and CA16 infection. Vaccine, 2021, 39, 4135-4143.	3.8	7
6	Dynamic Host Immune and Transcriptomic Responses to Respiratory Syncytial Virus Infection in a Vaccination-Challenge Mouse Model. Virologica Sinica, 2021, 36, 1327-1340.	3.0	3
7	Proline to Threonine Mutation at Position 162 of NS5B of Classical Swine Fever Virus Vaccine C Strain Promoted Genome Replication and Infectious Virus Production by Facilitating Initiation of RNA Synthesis. Viruses, 2021, 13, 1523.	3.3	6
8	Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients. PLoS Computational Biology, 2021, 17, e1009587.	3.2	11
9	Characterization of Salmonella spp. isolated from chickens in Central China. BMC Veterinary Research, 2020, 16, 299.	1.9	28
10	Hepatitis B Virus Core Particles Containing a Conserved Region of the G Protein Combined with Interleukin-35 Protected Mice against Respiratory Syncytial Virus Infection without Vaccine-Enhanced Immunopathology. Journal of Virology, 2020, 94, .	3.4	10
11	Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine, 2020, 38, 1690-1699.	3.8	9
12	Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein Complex and Imparing its Function. Journal of General Virology, 2020, 101, 385-398.	2.9	6
13	Japanese Encephalitis Virus Induces Apoptosis and Encephalitis by Activating the PERK Pathway. Journal of Virology, 2019, 93, .	3.4	49
14	A multiplex RT-PCR assay for rapid and simultaneous detection of four RNA viruses in swine. Journal of Virological Methods, 2019, 269, 38-42.	2.1	18
15	Japanese encephalitis virus induces apoptosis by inhibiting Foxo signaling pathway. Veterinary Microbiology, 2018, 220, 73-82.	1.9	39
16	Synergistic roles of the E2 glycoprotein and 3′ untranslated region in the increased genomic stability of chimeric classical swine fever virus with attenuated phenotypes. Archives of Virology, 2017, 162, 2667-2678.	2.1	7
17	Classical swine fever virus nonstructural protein p7 modulates infectious virus production. Scientific Reports, 2017, 7, 12995.	3.3	4
18	Uncoupling of Protease <i>trans</i> -Cleavage and Helicase Activities in Pestivirus NS3. Journal of Virology, 2017, 91, .	3.4	11

Zishu Pan

#	Article	IF	CITATIONS
19	Hepatitis B virus core particles containing multiple epitopes confer protection against enterovirus 71 and coxsackievirus A16 infection in mice. Vaccine, 2017, 35, 7322-7330.	3.8	15
20	Vesicular stomatitis virus-based vaccines expressing EV71 virus-like particles elicit strong immune responses and protect newborn mice from lethal challenges. Vaccine, 2016, 34, 4196-4204.	3.8	16
21	Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Research, 2016, 131, 131-140.	4.1	15
22	Development of a novel single-step reverse genetics system for the generation of classical swine fever virus. Archives of Virology, 2016, 161, 1831-1838.	2.1	10
23	Genome Sequence of a Fowl Adenovirus Serotype 4 Strain Lethal to Chickens, Isolated from China. Genome Announcements, 2016, 4, .	0.8	21
24	Molecular basis for the thermostability of Newcastle disease virus. Scientific Reports, 2016, 6, 22492.	3.3	20
25	Japanese encephalitis virus induces apoptosis by the IRE1/JNK pathway of ER stress response in BHK-21 cells. Archives of Virology, 2016, 161, 699-703.	2.1	44
26	Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection. Vaccine, 2016, 34, 252-260.	3.8	17
27	Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus. Virus Research, 2016, 211, 79-85.	2.2	16
28	Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling. Journal of Immunology Research, 2015, 2015, 1-11.	2.2	38
29	Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Scientific Reports, 2015, 5, 9283.	3.3	48
30	The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication. Virus Research, 2015, 210, 90-99.	2.2	10
31	Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11324-11329.	7.1	99
32	Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection. PLoS ONE, 2015, 10, e0129276.	2.5	16
33	Additional Evidence That the Polymerase Subunits Contribute to the Viral Replication and the Virulence of H5N1 Avian Influenza Virus Isolates in Mice. PLoS ONE, 2015, 10, e0124422.	2.5	1
34	A multiplex reverse transcription-PCR assay for the detection of influenza A virus and differentiation of the H1, H3, H5 and H9 subtypes. Journal of Virological Methods, 2013, 188, 47-50.	2.1	11
35	Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Research, 2012, 165, 61-70.	2.2	17
36	Modeling and Dynamical Analysis of Virus-Triggered Innate Immune Signaling Pathways. PLoS ONE, 2012, 7, e48114.	2.5	22

Zishu Pan

#	Article	IF	CITATIONS
37	The virus-induced signaling adaptor molecule enhances DNA-raised immune protection against H5N1 influenza virus infection in mice. Vaccine, 2011, 29, 2561-2567.	3.8	11
38	Understanding inhibition of viral proteins on type I IFN signaling pathways with modeling and optimization. Journal of Theoretical Biology, 2010, 265, 691-703.	1.7	11
39	The Toll-like receptor adaptor molecule TRIF enhances DNA vaccination against classical swine fever. Veterinary Immunology and Immunopathology, 2010, 137, 47-53.	1.2	15
40	Classical swine fever virus E ^{rns} glycoprotein antagonizes induction of interferon-β by double-stranded RNA. Canadian Journal of Microbiology, 2009, 55, 698-704.	1.7	15
41	Enhanced protective immunity against H5N1 influenza virus challenge by vaccination with DNA expressing a chimeric hemagglutinin in combination with an MHC class I-restricted epitope of nucleoprotein in mice. Antiviral Research, 2009, 81, 253-260.	4.1	23
42	Analysis of synonymous codon usage in classical swine fever virus. Virus Genes, 2009, 38, 104-112.	1.6	105
43	Virus-Like Particle Vaccine Comprised of the HA, NA, and M1 Proteins of an Avian Isolated H5N1 Influenza Virus Induces Protective Immunity Against Homologous and Heterologous Strains in Mice. Viral Immunology, 2009, 22, 273-281.	1.3	43
44	Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Research, 2009, 141, 63-70.	2.2	24
45	Glycosylation of classical swine fever virus Erns is essential for binding double-stranded RNA and preventing interferon-beta induction. Virus Research, 2009, 146, 135-139.	2.2	11
46	Modeling specificity in the yeast MAPK signaling networks. Journal of Theoretical Biology, 2008, 250, 139-155.	1.7	26
47	Robustness analysis of EGFR signaling network with a multi-objective evolutionary algorithm. BioSystems, 2008, 91, 245-261.	2.0	5
48	12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology, 2008, 374, 390-398.	2.4	26
49	Immunization with plasmid DNA encoding influenza A virus nucleoprotein fused to a tissue plasminogen activator signal sequence elicits strong immune responses and protection against H5N1 challenge in mice. Journal of Virological Methods, 2008, 154, 121-127.	2.1	46
50	The selection pressure analysis of classical swine fever virus envelope protein genes Erns and E2. Virus Research, 2008, 131, 132-135.	2.2	22
51	Construction of cytopathic PK-15 cell model of classical swine fever virus. Science Bulletin, 2003, 48, 887-891.	9.0	6
52	Thymidine kinase gene mutation leads to reduced virulence of pseudorabies virus. Science Bulletin, 2001, 46, 1972-1975.	1.7	1