## **Ronald J Smernik**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494559/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phosphorus speciation and release from different plant litters on a River MurrayÂ(Australia)<br>floodplain. Plant and Soil, 2022, 471, 141-156.                                                                                         | 1.8 | 1         |
| 2  | Arbuscular mycorrhizas increased tomato biomass and nutrition but did not affect local soil P<br>availability or 16S bacterial community in the field. Science of the Total Environment, 2022, 819, 152620.                             | 3.9 | 5         |
| 3  | Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability?. Agricultural Water Management, 2021, 243, 106422.                                                           | 2.4 | 21        |
| 4  | <i>Xylomelum occidentale</i> (Proteaceae) accesses relatively mobile soil organic phosphorus without releasing carboxylates. Journal of Ecology, 2021, 109, 246-259.                                                                    | 1.9 | 16        |
| 5  | Frequency Versus Quantity: Phenotypic Response of Two Wheat Varieties to Water and Nitrogen<br>Variability. Journal of Soil Science and Plant Nutrition, 2021, 21, 1631-1641.                                                           | 1.7 | 1         |
| 6  | Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils. Geoderma, 2021, 393, 115010.                                                                                       | 2.3 | 20        |
| 7  | Root and arbuscular mycorrhizal effects on soil nutrient loss are modulated by soil texture. Applied Soil Ecology, 2021, 167, 104097.                                                                                                   | 2.1 | 8         |
| 8  | Variable water cycles have a greater impact on wheat growth and soil nitrogen response than constant watering. Plant Science, 2020, 290, 110146.                                                                                        | 1.7 | 13        |
| 9  | Soil Microbial Community Responses After Amendment with Thermally Altered Pinus radiata Needles.<br>Microbial Ecology, 2020, 79, 409-419.                                                                                               | 1.4 | 0         |
| 10 | Soil phosphorus pools with addition of fertiliser phosphorus in a long-term grazing experiment.<br>Nutrient Cycling in Agroecosystems, 2020, 116, 151-164.                                                                              | 1.1 | 6         |
| 11 | The chemical nature of soil organic phosphorus: A critical review and global compilation of quantitative data. Advances in Agronomy, 2020, 160, 51-124.                                                                                 | 2.4 | 27        |
| 12 | Partitioning of phosphorus between biochemical and storage compounds in leaves follows a<br>consistent pattern across four Australian genera growing in native settings. Plant and Soil, 2020, 454,<br>57-75.                           | 1.8 | 10        |
| 13 | Organic chemistry insights for the exceptional soil carbon storage of the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science, 2020, 237, 106662.                                                                        | 0.9 | 10        |
| 14 | Effects of plant roots and arbuscular mycorrhizas on soil phosphorus leaching. Science of the Total<br>Environment, 2020, 722, 137847.                                                                                                  | 3.9 | 24        |
| 15 | Constraining the carbonate system in soils via testing the internal consistency of pH, pCO2 and alkalinity measurements. Geochemical Transactions, 2020, 21, 4.                                                                         | 1.8 | 4         |
| 16 | Effect of land use on organic matter composition in density fractions of contrasting soils: A<br>comparative study using 13C NMR and DRIFT spectroscopy. Science of the Total Environment, 2020, 726,<br>138395.                        | 3.9 | 32        |
| 17 | Thermal degradation of phytate produces all four possible inositol pentakisphosphates as determined by ion chromatography and1H and31P NMR spectroscopy. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 1140-1148. | 0.8 | 4         |
| 18 | Post fire litters are richer in water soluble carbon and lead to increased microbial activity. Applied<br>Soil Ecology, 2019, 136, 101-105.                                                                                             | 2.1 | 13        |

| #  | Article                                                                                                                                                                                                                               | IF                 | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 19 | Fire influences needle decomposition: Tipping point in Pinus radiata carbon chemistry and soil nitrogen transformations. Soil Biology and Biochemistry, 2019, 135, 361-368.                                                           | 4.2                | 4                   |
| 20 | The effect of fire affected Pinus radiata litter and char addition on soil nitrogen cycling. Science of the Total Environment, 2019, 664, 276-282.                                                                                    | 3.9                | 5                   |
| 21 | Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell and Environment, 2019, 42, 1987-2002.                                                                  | 2.8                | 9                   |
| 22 | Fire-derived organic matter retains ammonia through covalent bond formation. Nature<br>Communications, 2019, 10, 664.                                                                                                                 | 5.8                | 38                  |
| 23 | Spectrophotometric measurement of the pH of soil extracts using a multiple indicator dye mixture.<br>European Journal of Soil Science, 2019, 70, 411-420.                                                                             | 1.8                | 7                   |
| 24 | Phosphorus speciation and dynamics in river sediments, floodplain soils and leaf litter from the<br>Lower Murray River region. Marine and Freshwater Research, 2019, 70, 1522.                                                        | 0.7                | 11                  |
| 25 | Facile decomposition of phytate in the solid-state: Kinetics and decomposition pathways. Phosphorus,<br>Sulfur and Silicon and the Related Elements, 2018, 193, 192-199.                                                              | 0.8                | 3                   |
| 26 | The application of a spectrophotometric method to determine pH in acidic (pH<5) soils. Talanta, 2018, 186, 421-426.                                                                                                                   | 2.9                | 12                  |
| 27 | Biogeochemical expression of buried iron-oxide‑copper‑gold (IOCC) mineral systems in mallee eucalypts<br>on the Yorke Peninsula, southern Olympic Domain; South Australia. Journal of Geochemical<br>Exploration, 2018, 185, 139-152. | 1.5                | 4                   |
| 28 | Loss and gain of carbon during char degradation. Soil Biology and Biochemistry, 2017, 106, 80-89.                                                                                                                                     | 4.2                | 21                  |
| 29 | Organic amendments as phosphorus fertilisers: Chemical analyses, biological processes and plant P<br>uptake. Soil Biology and Biochemistry, 2017, 107, 50-59.                                                                         | 4.2                | 46                  |
| 30 | Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment. Environmental Pollution, 2017, 220, 788-796.                                                                                   | 3.7                | 24                  |
| 31 | Direct recovery of 33 P-labelled fertiliser phosphorus in subterranean clover ( Trifolium) Tj ETQq1 1 0.784314 rgE<br>Ecosystems and Environment, 2017, 246, 144-156.                                                                 | 3T /Overloc<br>2.5 | k 10 Tf 50 20<br>13 |
| 32 | The composition of organic phosphorus in soils of the Snowy Mountains region of south-eastern<br>Australia. Soil Research, 2017, 55, 10.                                                                                              | 0.6                | 21                  |
| 33 | A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. Advanced<br>Functional Materials, 2017, 27, 1702384.                                                                                                  | 7.8                | 115                 |
| 34 | The chemical nature of organic phosphorus that accumulates in fertilized soils of a temperate pasture as determined by solution31P NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 2017, 180, 27-38.                   | 1.1                | 19                  |
| 35 | Development of a Spectrophotometric Method for Determining pH of Soil Extracts and Comparison with Glass Electrode Measurements. Soil Science Society of America Journal, 2017, 81, 1350-1358.                                        | 1.2                | 19                  |
| 36 | Phosphorus Distribution in Soils from Australian Dairy and Beef Rearing Pastoral Systems. Applied<br>Sciences (Switzerland), 2016, 6, 31.                                                                                             | 1.3                | 2                   |

Ronald J Smernik

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Phosphorus speciation of dormant grapevine (Vitis viniferaL.) canes in the Barossa Valley, South<br>Australia. Australian Journal of Grape and Wine Research, 2016, 22, 462-468.                                                 | 1.0 | 13        |
| 38 | Organic phosphorus speciation in Australian Red Chromosols: stoichiometric control. Soil Research, 2016, 54, 11.                                                                                                                 | 0.6 | 7         |
| 39 | Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters. Journal of Hazardous Materials, 2016, 308, 430-439.                                         | 6.5 | 28        |
| 40 | Embedding publication skills in science research training: a writing group programme based on applied<br>linguistics frameworks and facilitated by a scientist. Higher Education Research and Development,<br>2016, 35, 229-241. | 1.9 | 12        |
| 41 | The fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphate. Plant and Soil, 2016, 401, 23-38.                                                     | 1.8 | 23        |
| 42 | Soil carbon characterization and nutrient ratios across land uses on two contrasting soils: Their relationships to microbial biomass and function. Soil Biology and Biochemistry, 2016, 97, 50-62.                               | 4.2 | 45        |
| 43 | Identification of RNA Hydrolysis Products in NaOH-EDTA Extracts using <sup>31</sup> P NMR<br>Spectroscopy. Communications in Soil Science and Plant Analysis, 2015, 46, 2746-2756.                                               | 0.6 | 26        |
| 44 | An assessment of various measures of soil phosphorus and the net accumulation of phosphorus in fertilized soils under pasture. Journal of Plant Nutrition and Soil Science, 2015, 178, 543-554.                                  | 1.1 | 36        |
| 45 | Quantitative analysis of <sup>31</sup> P NMR spectra of soil extracts – dealing with overlap of broad and sharp signals. Magnetic Resonance in Chemistry, 2015, 53, 679-685.                                                     | 1.1 | 17        |
| 46 | Mid-infrared spectra predict nuclear magnetic resonance spectra of soil carbon. Geoderma, 2015,<br>247-248, 65-72.                                                                                                               | 2.3 | 10        |
| 47 | 100 Years of superphosphate addition to pasture in an acid soil—current nutrient status and future management. Soil Research, 2015, 53, 662.                                                                                     | 0.6 | 19        |
| 48 | Improving Sensitivity of Solution <sup>31</sup> P NMR Analysis in Australian Xeralfs. Communications in Soil Science and Plant Analysis, 2015, 46, 1034-1043.                                                                    | 0.6 | 2         |
| 49 | Spectral sensitivity of solution 31P NMR spectroscopy is improved by narrowing the soil to solution ratio to 1:4 for pasture soils of low organic P content. Geoderma, 2015, 257-258, 48-57.                                     | 2.3 | 16        |
| 50 | Characterisation of soil organic phosphorus in NaOH-EDTA extracts: A comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biology and Biochemistry, 2015, 91, 298-309.                                            | 4.2 | 78        |
| 51 | Complex Forms of Soil Organic Phosphorus–A Major Component of Soil Phosphorus. Environmental<br>Science & Technology, 2015, 49, 13238-13245.                                                                                     | 4.6 | 97        |
| 52 | Microbial degradation of organic carbon sorbed to phyllosilicate clays with and without hydrous iron oxide coating. European Journal of Soil Science, 2015, 66, 83-94.                                                           | 1.8 | 36        |
| 53 | Control of the spatial homogeneity of pore surface chemistry in particulate activated carbon.<br>Carbon, 2015, 95, 144-149.                                                                                                      | 5.4 | 13        |
| 54 | Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 2015, 78, 135-143.                                                                                                                                | 0.9 | 207       |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Do organic inputs alter resistance and resilience of soil microbial community to drying?. Soil Biology and Biochemistry, 2015, 81, 58-66.                                                                                                         | 4.2 | 32        |
| 56 | The effects of organic matter–mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils. Chemosphere, 2015, 119, 99-104.                                                                               | 4.2 | 46        |
| 57 | The Organic P Composition of Vertisols as Determined by <sup>31</sup> P NMR Spectroscopy. Soil Science Society of America Journal, 2014, 78, 1893-1902.                                                                                           | 1.2 | 35        |
| 58 | Persistence of estrogenic activity in soils following land application of biosolids. Environmental Toxicology and Chemistry, 2014, 33, 26-28.                                                                                                     | 2.2 | 12        |
| 59 | Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy. Talanta, 2014, 126, 122-129.                                                                                  | 2.9 | 24        |
| 60 | Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant and Soil, 2014, 378, 125-137.                                                                                                                     | 1.8 | 51        |
| 61 | Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual-labelling experiment. Soil Biology and Biochemistry, 2014, 71, 31-39.                                                                 | 4.2 | 46        |
| 62 | Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities?. Soil Biology and Biochemistry, 2014, 70, 54-61.                                                                                       | 4.2 | 119       |
| 63 | Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques. Environmental Science and Pollution Research, 2014, 21, 4265-4275. | 2.7 | 1         |
| 64 | The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study. Biomass and Bioenergy, 2014, 60, 121-129.                                                                                         | 2.9 | 153       |
| 65 | Control of the pore size distribution and its spatial homogeneity in particulate activated carbon.<br>Carbon, 2014, 78, 113-120.                                                                                                                  | 5.4 | 20        |
| 66 | Phosphorus availability in chicken manure is lower with increased stockpiling period, despite a larger orthophosphate content. Plant and Soil, 2013, 373, 359-372.                                                                                | 1.8 | 21        |
| 67 | Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil. Science of the Total Environment, 2013, 447, 56-63.                                                                                | 3.9 | 13        |
| 68 | Using the power of C-13 NMR to interpret infrared spectra of soil organic matter: A two-dimensional correlation spectroscopy approach. Vibrational Spectroscopy, 2013, 66, 76-82.                                                                 | 1.2 | 14        |
| 69 | A demonstration of the high variability of chars produced from wood in bushfires. Organic<br>Geochemistry, 2013, 55, 38-44.                                                                                                                       | 0.9 | 36        |
| 70 | The Organic Chemistry of Plant Residues: Comparison Of NMR and Pyrolysis Data Using Multivariate<br>Statistical Approaches. Current Organic Chemistry, 2013, 17, 3006-3012.                                                                       | 0.9 | 2         |
| 71 | Rapid degradation of pyrogenic carbon. Global Change Biology, 2012, 18, 3306-3316.                                                                                                                                                                | 4.2 | 136       |
| 72 | Biochar Carbon Stability in a Clayey Soil As a Function of Feedstock and Pyrolysis Temperature.<br>Environmental Science & Technology, 2012, 46, 11770-11778.                                                                                     | 4.6 | 456       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Crop residue phosphorus: speciation and potential bio-availability. Plant and Soil, 2012, 359, 375-385.                                                                                                                      | 1.8 | 155       |
| 74 | Changes in character of organics in the receiving environment of effluent from a sulphite pulp mill.<br>Environmental Science and Pollution Research, 2012, 19, 2151-2158.                                                   | 2.7 | 6         |
| 75 | Measuring organic carbon in Calcarosols: understanding the pitfalls and complications. Soil Research, 2012, 50, 397.                                                                                                         | 0.6 | 25        |
| 76 | Soil Organic Phosphorus Speciation Using Spectroscopic Techniques. Soil Biology, 2011, , 3-36.                                                                                                                               | 0.6 | 30        |
| 77 | The decomposition of windrowed, chipped logging slash and tree seedling response: A plant growth and nuclear magnetic resonance spectroscopy study. Organic Geochemistry, 2011, 42, 936-946.                                 | 0.9 | 8         |
| 78 | Overestimation of the importance of phytate in NaOH–EDTA soil extracts as assessed by 31P NMR<br>analyses. Organic Geochemistry, 2011, 42, 955-964.                                                                          | 0.9 | 49        |
| 79 | Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Organic Geochemistry, 2011, 42, 1194-1202.                                                          | 0.9 | 186       |
| 80 | A quantitative assessment of phosphorus forms in some Australian soils. Soil Research, 2011, 49, 152.                                                                                                                        | 0.6 | 56        |
| 81 | Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat (Triticum aestivum L.) in sand. European Journal of Soil Science, 2011, 62, 666-675.                  | 1.8 | 27        |
| 82 | Selected personal care products and endocrine disruptors in biosolids: An Australia-wide survey.<br>Science of the Total Environment, 2011, 409, 1075-1081.                                                                  | 3.9 | 43        |
| 83 | Changes in the organic character of post-coagulated Pinus radiata sulfite pulp mill wastewater under<br>aerated stabilization basin treatment—A laboratory scale study. Chemical Engineering Journal, 2011,<br>175, 160-168. | 6.6 | 15        |
| 84 | Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture,<br>Ecosystems and Environment, 2011, 140, 137-147.                                                                           | 2.5 | 75        |
| 85 | The chemical nature of P accumulation in agricultural soils—implications for fertiliser management<br>and design: an Australian perspective. Plant and Soil, 2011, 349, 69-87.                                               | 1.8 | 284       |
| 86 | Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution <sup>31</sup> P NMR study. European Journal of Soil Science, 2010, 61, 563-575.                                                       | 1.8 | 84        |
| 87 | Retention capacity of biochar-amended New Zealand dairy farm soil for an estrogenic steroid hormone and its primary metabolite. Soil Research, 2010, 48, 648.                                                                | 0.6 | 55        |
| 88 | Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research, 2010, 48, 618.                                                               | 0.6 | 332       |
| 89 | An investigation into the reactions of biochar in soil. Soil Research, 2010, 48, 501.                                                                                                                                        | 0.6 | 840       |
| 90 | Changes in water quality following gypsum application to catchment soils of the Mount Lofty Ranges,<br>South Australia. Organic Geochemistry, 2010, 41, 116-123.                                                             | 0.9 | 9         |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The use of MSSV pyrolysis to assist the molecular characterisation of aquatic natural organic matter. Water Research, 2010, 44, 3039-3054.                                                                  | 5.3 | 20        |
| 92  | Chemical composition of composted grape marc. Water Science and Technology, 2009, 60, 1265-1271.                                                                                                            | 1.2 | 9         |
| 93  | Spiking Improved Solution Phosphorusâ€31 Nuclear Magnetic Resonance Identification of Soil<br>Phosphorus Compounds. Soil Science Society of America Journal, 2009, 73, 919-927.                             | 1.2 | 183       |
| 94  | Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology and Biochemistry, 2009, 41, 1966-1975.                                         | 4.2 | 149       |
| 95  | Changes in the chemistry of sedimentary organic matter within the Coorong over space and time.<br>Biogeochemistry, 2009, 92, 9-25.                                                                          | 1.7 | 46        |
| 96  | Long-term black carbon dynamics in cultivated soil. Biogeochemistry, 2009, 92, 163-176.                                                                                                                     | 1.7 | 133       |
| 97  | Mechanisms of organic matter stabilization and destabilization in soils and sediments: conference introduction. Biogeochemistry, 2009, 92, 3-8.                                                             | 1.7 | 14        |
| 98  | Direct Comparison between Visible Near- and Mid-Infrared Spectroscopy for Describing Diuron Sorption in Soils. Environmental Science & amp; Technology, 2009, 43, 4049-4055.                                | 4.6 | 33        |
| 99  | The effect of lipids on the sorption of diuron and phenanthrene in soils. Chemosphere, 2009, 74, 1062-1068.                                                                                                 | 4.2 | 19        |
| 100 | The effect of solvent-conditioning on soil organic matter sorption affinity for diuron and phenanthrene. Chemosphere, 2009, 76, 1062-1066.                                                                  | 4.2 | 6         |
| 101 | Variation in the degree of aromatic condensation of chars. Organic Geochemistry, 2009, 40, 1161-1168.                                                                                                       | 0.9 | 140       |
| 102 | Soil organic phosphorus and microbial community composition as affected by 26Âyears of different management strategies. Biology and Fertility of Soils, 2008, 44, 717-726.                                  | 2.3 | 53        |
| 103 | Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil<br>Biology and Biochemistry, 2008, 40, 932-946.                                                         | 4.2 | 79        |
| 104 | Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and<br>Biochemistry, 2008, 40, 1908-1915.                                                                        | 4.2 | 80        |
| 105 | Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Applied Geochemistry, 2008, 23, 2113-2122. | 1.4 | 129       |
| 106 | Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron. Chemosphere, 2008, 70, 1153-1160.                                                             | 4.2 | 68        |
| 107 | Changes in sewage sludge carbon forms along a treatment stream. Chemosphere, 2008, 72, 981-985.                                                                                                             | 4.2 | 8         |
| 108 | Separating the effects of organic matter–mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene. Chemosphere, 2008, 72, 886-890.                                      | 4.2 | 48        |

Ronald J Smernik

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Midinfrared Spectroscopy and Chemometrics to Predict Diuron Sorption Coefficients in Soils.<br>Environmental Science & Technology, 2008, 42, 3283-3288.                                                                          | 4.6 | 26        |
| 110 | Comparison of solid-state 13C NMR spectra of soil organic matter from an experimental burning site acquired at two field strengths. Soil Research, 2008, 46, 122.                                                                | 0.6 | 7         |
| 111 | Comparison of quantification methods to measure fireâ€derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles, 2007, 21, . | 1.9 | 483       |
| 112 | On the Use of Hydrofluoric Acid Pretreatment of Soils for Phosphorus-31 Nuclear Magnetic Resonance Analyses. Soil Science Society of America Journal, 2007, 71, 1111-1118.                                                       | 1.2 | 22        |
| 113 | Identification of Phytate in Phosphorus-31 Nuclear Magnetic Resonance Spectra: The Need for Spiking.<br>Soil Science Society of America Journal, 2007, 71, 1045-1050.                                                            | 1.2 | 77        |
| 114 | Chemical changes and phosphorus release during decomposition of pea residues in soil. Soil Biology and Biochemistry, 2007, 39, 2696-2699.                                                                                        | 4.2 | 30        |
| 115 | The effect of water content on solid-state 13 C NMR quantitation and relaxation rates of soil organic matter. European Journal of Soil Science, 2006, 57, 665-676.                                                               | 1.8 | 12        |
| 116 | NMR Characterization of 13C-Benzene Sorbed to Natural and Prepared Charcoals. Environmental Science & Technology, 2006, 40, 1764-1769.                                                                                           | 4.6 | 41        |
| 117 | Solid-state 13C NMR analysis of size and density fractions of marine sediments: Insight into organic carbon sources and preservation mechanisms. Geochimica Et Cosmochimica Acta, 2006, 70, 666-686.                             | 1.6 | 83        |
| 118 | Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood<br>(Castanea sativa) as reference materials for black carbon quantification. Organic Geochemistry, 2006,<br>37, 1629-1633.     | 0.9 | 187       |
| 119 | Hydrolysis of Pyrophosphate in a Highly Calcareous Soil. Soil Science Society of America Journal, 2006, 70, 856-862.                                                                                                             | 1.2 | 33        |
| 120 | Assessing the quantitative reliability of solid-state 13C NMR spectra of kerogens across a gradient of thermal maturity. Solid State Nuclear Magnetic Resonance, 2006, 29, 312-321.                                              | 1.5 | 37        |
| 121 | Does Solid-state 15N NMR Spectroscopy Detect all Soil Organic Nitrogen?. Biogeochemistry, 2005, 75, 507-528.                                                                                                                     | 1.7 | 55        |
| 122 | Solid-state 15N NMR analysis of highly 15N-enriched plant materials. Plant and Soil, 2005, 275, 271-283.                                                                                                                         | 1.8 | 18        |
| 123 | A New Way to Use Solid-State Carbon-13 Nuclear Magnetic Resonance Spectroscopy to Study the<br>Sorption of Organic Compounds to Soil Organic Matter. Journal of Environmental Quality, 2005, 34,<br>1194-1204.                   | 1.0 | 18        |
| 124 | Application of Spin Counting to the Solid-State 31 P NMR Analysis of Pasture Soils with Varying<br>Phosphorus Content. Soil Science Society of America Journal, 2005, 69, 2058-2070.                                             | 1.2 | 32        |
| 125 | Using 13C nuclear magnetic resonance spectroscopy for the study of northern hardwood tissues.<br>Canadian Journal of Forest Research, 2005, 35, 1821-1831.                                                                       | 0.8 | 26        |
| 126 | Solid-state 13C NMR spectroscopic studies of soil organic matter at two magnetic field strengths.<br>Geoderma, 2005, 125, 249-271.                                                                                               | 2.3 | 27        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Investigation of the Role of Structural Domains Identified in Sedimentary Organic Matter in the<br>Sorption of Hydrophobic Organic Compounds. Environmental Science & Technology, 2005, 39,<br>3925-3932. | 4.6 | 42        |
| 128 | Changes in the Nature of Sewage Sludge Organic Matter During a Twentyâ€Oneâ€Month Incubation.<br>Journal of Environmental Quality, 2004, 33, 1924-1929.                                                   | 1.0 | 18        |
| 129 | Quantitative solid-state 13 C NMR spectroscopy of organic matter fractions in lowland rice soils.<br>European Journal of Soil Science, 2004, 55, 367-379.                                                 | 1.8 | 13        |
| 130 | Cadmium sorption in biosolids amended soils: results from a field trial. Science of the Total Environment, 2004, 327, 239-247.                                                                            | 3.9 | 14        |
| 131 | Characterisation of sedimentary organic matter from three south-eastern Australian estuaries using solid-state 13C-NMR techniques. Marine and Freshwater Research, 2004, 55, 285.                         | 0.7 | 10        |
| 132 | Spin accounting and RESTORE - two new methods to improve quantitation in solid-state 13 C NMR analysis of soil organic matter. European Journal of Soil Science, 2003, 54, 103-116.                       | 1.8 | 41        |
| 133 | Characterization of Sewage Sludge Organic Matter Using Solidâ€State Carbonâ€13 Nuclear Magnetic<br>Resonance Spectroscopy. Journal of Environmental Quality, 2003, 32, 1516-1522.                         | 1.0 | 34        |
| 134 | Advanced Solid-State Carbon-13 Nuclear Magnetic Resonance Spectroscopic Studies of Sewage Sludge<br>Organic Matter. Journal of Environmental Quality, 2003, 32, 1523.                                     | 1.0 | 13        |
| 135 | Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood.<br>Organic Geochemistry, 2002, 33, 1093-1109.                                                               | 0.9 | 723       |
| 136 | Paramagnetic Effects on Solid State Carbonâ€13 Nuclear Magnetic Resonance Spectra of Soil Organic<br>Matter. Journal of Environmental Quality, 2002, 31, 414-420.                                         | 1.0 | 20        |
| 137 | Determination of T1ÏH Relaxation Rates in Charred and Uncharred Wood and Consequences for NMR<br>Quantitation. Solid State Nuclear Magnetic Resonance, 2002, 22, 50-70.                                   | 1.5 | 67        |
| 138 | Impact of Remote Protonation on 13C CPMAS NMR Quantitation of Charred and Uncharred Wood.<br>Solid State Nuclear Magnetic Resonance, 2002, 22, 71-82.                                                     | 1.5 | 47        |
| 139 | Paramagnetic effects on solid state carbon-13 nuclear magnetic resonance spectra of soil organic matter. Journal of Environmental Quality, 2002, 31, 414-20.                                              | 1.0 | 5         |
| 140 | A solid state 13C-NMR study of kerogen degradation during black shale weathering. Geochimica Et<br>Cosmochimica Acta, 2001, 65, 1867-1882.                                                                | 1.6 | 89        |
| 141 | Solid-state 13 C-NMR dipolar dephasing experiments for quantifying protonated and non-protonated carbon in soil organic matter and model systems. European Journal of Soil Science, 2001, 52, 103-120.    | 1.8 | 43        |
| 142 | Background Signal in Solid State 13C NMR Spectra of Soil Organic Matter (SOM)—Quantification and<br>Minimization. Solid State Nuclear Magnetic Resonance, 2001, 20, 74-84.                                | 1.5 | 37        |
| 143 | Effect of paramagnetic cations on solid state 13C nuclear magnetic resonance spectra of natural organic materials. Communications in Soil Science and Plant Analysis, 2000, 31, 3011-3026.                | 0.6 | 24        |
| 144 | The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. Geoderma, 2000, 96, 101-129.                                                              | 2.3 | 183       |

| #   | Article                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. Geoderma, 2000, 96, 159-171.                   | 2.3 | 133       |
| 146 | Effects of added paramagnetic ions on the CP/MAS NMR spectrum of a de-ashed soil. Geoderma, 1999, 89, 219-248.                                                 | 2.3 | 77        |
| 147 | Synthesis and Properties of Iron(II) Hydride Complexes Containing the Tripodal Tetraphosphine Ligand P(CH2CH2PMe2)3. Inorganic Chemistry, 1997, 36, 5984-5990. | 1.9 | 32        |
| 148 | Iron Complexes Containing the Tripodal Tetraphosphine Ligand P(CH2CH2PMe2)3. Inorganic Chemistry, 1997, 36, 2884-2892.                                         | 1.9 | 30        |
| 149 | Synthesis of new tetradentate oligophosphine ligands. Inorganic Chemistry, 1993, 32, 4084-4088.                                                                | 1.9 | 31        |
| 150 | The vinylidene-acetylene rearrangement. A phantom minimum on the MP2 potential energy surface.<br>Chemical Physics Letters, 1992, 188, 589-594.                | 1.2 | 27        |