Hongyu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945553/publications.pdf

Version: 2024-02-01

44444 29333 11,947 137 50 108 citations h-index g-index papers 149 149 149 17908 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of substrate-bound seaweed-like Au nanowires with amino silane coupling agents. Chemical Communications, 2022, 58, 989-992.	2.2	3
2	Monitoring the rapid nanocrystal transformation via trapped intermediates of silica encapsulation. Science China Materials, 2022, 65, 1963-1970.	3.5	1
3	The patchy growth mode: Modulation of the Au-Au interface via phenynyl ligands. Science China Materials, 2022, 65, 1687-1695.	3.5	7
4	Continuous tuning the wetting growth of Au on Se nanoparticles. Journal of Colloid and Interface Science, 2022, 618, 451-461.	5.0	2
5	Facile Synthesis of Pd and PdPtNi Trimetallic Nanosheets as Enhanced Oxygen Reduction Electrocatalysts. Small, 2022, 18, e2103665.	5.2	20
6	From flat to deep concave: an unusual mode of facet control. Chemical Communications, 2022, 58, 6128-6131.	2.2	6
7	Enhancing the Mechanical Robustness of Gold Nanowire Array via Sulfideâ€Mediated Growth. Small Structures, 2022, 3, .	6.9	3
8	Controllable synthesis of gold nanoparticle dimers <i>via</i> site-selective growth. Chemical Communications, 2022, 58, 7932-7935.	2.2	4
9	Turning weak into strong: on the CTAB-induced active surface growth. Science China Chemistry, 2022, 65, 1299-1305.	4.2	7
10	Tuning Au–Cu Janus Structures through Strong Ligand-Mediated Interfacial Energy Control. Chemistry of Materials, 2022, 34, 6057-6067.	3.2	7
11	Understanding the evolution of tunable spiral threads in homochiral Au nano-screws. Inorganic Chemistry Frontiers, 2022, 9, 4136-4141.	3.0	9
12	Alkynyl ligands-induced growth of ultrathin nanowires arrays. Journal of Colloid and Interface Science, 2022, 627, 640-649.	5.0	1
13	Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. Angewandte Chemie - International Edition, 2021, 60, 3047-3054.	7.2	18
14	Noble metal nanowire arrays as an ethanol oxidation electrocatalyst. Nanoscale Advances, 2021, 3, 177-181.	2.2	6
15	Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. Angewandte Chemie, 2021, 133, 3084-3091.	1.6	4
16	Probing the ligand exchange kinetics of phenynyl-based ligands on colloidal Au nanoparticles. Materials Chemistry Frontiers, 2021, 5, 465-471.	3.2	11
17	Food waste biorefinery: case study in China for enhancing the emerging bioeconomy., 2021,, 421-438.		1
18	Template-less Synthesis of Coded Au Nanowires. Nano Letters, 2021, 21, 1156-1160.	4.5	10

#	Article	IF	CITATIONS
19	Designing caps for colloidal Au nanoparticles. Chemical Science, 2021, 12, 3644-3650.	3.7	16
20	$R\tilde{A}\frac{1}{4}$ cktitelbild: Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets (Angew. Chem. $6/2021$). Angewandte Chemie, 2021 , 133 , $3352-3352$.	1.6	0
21	Engineering the Spatial Arrangement of Au–C60 Heterostructures. Chemistry of Materials, 2021, 33, 5268-5275.	3.2	7
22	<i>In Situ</i> Precise Tuning of Bimetallic Electronic Effect for Boosting Oxygen Reduction Catalysis. Nano Letters, 2021, 21, 7753-7760.	4.5	24
23	Partial Silica Encapsulation of Fe ₃ O ₄ Nanoparticles in Reverse Emulsion by Internal Energy Modulation. Chemistry of Materials, 2021, 33, 8460-8468.	3.2	6
24	Solvent exchange as a synthetic handle for controlling molecular crystals. Carbon, 2020, 160, 188-195.	5.4	2
25	Ultrasonic Bending of Silver Nanowires. ACS Nano, 2020, 14, 15286-15292.	7.3	12
26	Continuous Tuning of Au–Cu 2 O Janus Nanostructures for Efficient Charge Separation. Angewandte Chemie, 2020, 132, 22430-22435.	1.6	16
27	Scalable and continuous preparation of nano-stirbars by electrospinning. Chemical Communications, 2020, 56, 11767-11770.	2.2	10
28	On the effect of Fe oleate by-product in nano-stirbar synthesis. Nanoscale, 2020, 12, 18640-18645.	2.8	4
29	Precise Dimerization of Hollow Fullerene Compartments. Journal of the American Chemical Society, 2020, 142, 15396-15402.	6.6	22
30	Continuous Tuning of Au–Cu ₂ O Janus Nanostructures for Efficient Charge Separation. Angewandte Chemie - International Edition, 2020, 59, 22246-22251.	7.2	69
31	On the Exceptionally High Loading of L-Proline on Multi-Wall Carbon Nanotubes. Catalysts, 2020, 10, 1246.	1.6	2
32	Carboxylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketones by CO ₂ Fixation through Photoelectro-chemistry. ACS Applied Energy Materials, 2020, 3, 5813-5818.	2.5	21
33	Fine‶uning the Homometallic Interface of Auâ€onâ€Au Nanorods and Their Photothermal Therapy in the NIRâ€N Window. Angewandte Chemie - International Edition, 2020, 59, 14443-14448.	7.2	108
34	Braiding Ultrathin Au Nanowires into Ropes. Journal of the American Chemical Society, 2020, 142, 10629-10633.	6.6	14
35	Multiplexed SERS Barcodes for Anti-Counterfeiting. ACS Applied Materials & Amp; Interfaces, 2020, 12, 28532-28538.	4.0	51
36	Fineâ€Tuning the Homometallic Interface of Auâ€onâ€Au Nanorods and Their Photothermal Therapy in the NIRâ€II Window. Angewandte Chemie, 2020, 132, 14551-14556.	1.6	27

#	Article	lF	CITATIONS
37	Controllable syngas production on gold nanowires/nickel foam electrode in non-aqueous system. Journal of Colloid and Interface Science, 2020, 579, 290-296.	5.0	6
38	Direct silica coating of drug crystals for ultra-high loading. Nanoscale, 2020, 12, 5353-5358.	2.8	2
39	Gold nanospirals on colloidal gold nanoparticles. Journal of Colloid and Interface Science, 2019, 533, 304-310.	5.0	6
40	Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 18846-18851.	5.2	82
41	Tandem Self-Assembly of Block Copolymer: From Vesicles to Stacked Bowls. Macromolecules, 2019, 52, 6698-6703.	2.2	12
42	Two-dimensional C ₆₀ nano-meshes <i>via</i> crystal transformation. Nanoscale, 2019, 11, 8692-8698.	2.8	25
43	A general approach for encapsulating nanoparticles by polystyrene-block-poly(acrylic acid) shell in colloidal. Journal of Physics and Chemistry of Solids, 2019, 135, 109019.	1.9	4
44	Selfâ∈Healing of Polarizing Films via the Synergy between Gold Nanorods and Vitrimer. Advanced Materials, 2019, 31, e1900363.	11.1	44
45	On demand synthesis of hollow fullerene nanostructures. Nature Communications, 2019, 10, 1548.	5.8	51
46	A New Type of Capping Agent in Nanoscience: Metal Cations. Small, 2019, 15, 1900444.	5.2	6
47	Solution synthesis of helical gold nanowire bundles. Nanoscale, 2019, 11, 19729-19735.	2.8	8
48	Nanocarriers and Their Loading Strategies. Advanced Healthcare Materials, 2019, 8, e1801002.	3.9	124
49	Transformable masks for colloidal nanosynthesis. Nature Communications, 2018, 9, 563.	5.8	67
50	A general approach for encapsulating organic crystals in a polyaniline shell. Nanoscale, 2018, 10, 21001-21005.	2.8	1
51	Construction of Long Narrow Gaps in Ag Nanoplates. Journal of the American Chemical Society, 2018, 140, 15560-15563.	6.6	91
52	In-Vessel Co-Composting of Food Waste Employing Enriched Bacterial Consortium. Food Technology and Biotechnology, 2018, 56, 83-89.	0.9	11
53	Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749.	2.2	14
54	Twisting Ultrathin Au Nanowires into Double Helices. Small, 2018, 14, e1801925.	5.2	18

#	Article	lF	CITATIONS
55	Synthesis of Substrate-Bound Au Nanowires Via an Active Surface Growth Mechanism. Journal of Visualized Experiments, $2018, \dots$	0.2	O
56	Solution Growth of Ultralong Gold Nanohelices. ACS Nano, 2017, 11, 5538-5546.	7.3	30
57	Spirals and helices by asymmetric active surface growth. Nanoscale, 2017, 9, 18352-18358.	2.8	7
58	Effect of Thiolated Ligands in Au Nanowire Synthesis. Small, 2017, 13, 1702121.	5. 2	20
59	Depletion sphere: Explaining the number of Ag islands on Au nanoparticles. Chemical Science, 2017, 8, 430-436.	3.7	57
60	Exploiting Rayleigh Instability in Creating Parallel Au Nanowires with Exotic Arrangements. Small, 2016, 12, 930-938.	5.2	21
61	Phospholipid Endâ€Capped Acidâ€Degradable Polyurethane Micelles for Intracellular Delivery of Cancer Therapeutics. Advanced Healthcare Materials, 2016, 5, 1874-1883.	3.9	10
62	Revisiting the calcination-induced multi-layer hollowing of electrospun solid fibers. CrystEngComm, 2016, 18, 8637-8644.	1.3	3
63	Nanoscrews: Asymmetrical Etching of Silver Nanowires. Journal of the American Chemical Society, 2016, 138, 10770-10773.	6.6	30
64	Broadening the range of vesicle formation by heating. RSC Advances, 2016, 6, 98639-98645.	1.7	2
65	Sizeâ€Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures. Advanced Functional Materials, 2016, 26, 3687-3695.	7.8	9
66	Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles. Nanoscale, 2016, 8, 3447-3453.	2.8	11
67	Dual Stimuli-Responsive Vesicular Nanospheres Fabricated by Lipopolymer Hybrids for Tumor-Targeted Photodynamic Therapy. Biomacromolecules, 2016, 17, 20-31.	2.6	34
68	Using Polystyrene- block -poly(acrylic acid)-coated Metal Nanoparticles as Monomers for Their Homo- and Co-polymerization. Journal of Visualized Experiments, 2015, , e52954.	0.2	0
69	On the Origin and Underappreciated Effects of Ion Doping in Silica. Small, 2015, 11, 4351-4365.	5.2	35
70	Understanding the Phase Emergence of Mesoporous Silica. Small, 2015, 11, 232-238.	5.2	9
71	Encapsulation of Au Nanoparticles by Poly(4-Vinylpyridine) for Controlled Chain Assembly. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 153-158.	1.9	7
72	Substrate-bound growth of Au–Pd diblock nanowire and hybrid nanorod–plate. Nanoscale, 2015, 7, 8115-8121.	2.8	12

#	Article	IF	CITATIONS
73	Achieving Site-Specificity in Multistep Colloidal Synthesis. Journal of the American Chemical Society, 2015, 137, 7624-7627.	6.6	85
74	Ultrathin MoS ₂ Nanosheets Supported on Nâ€doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 7395-7398.	7.2	596
75	Thermodynamics versus Kinetics in Nanosynthesis. Angewandte Chemie - International Edition, 2015, 54, 2022-2051.	7.2	400
76	General Formation of MS (M = Ni, Cu, Mn) Boxâ€inâ€Box Hollow Structures with Enhanced Pseudocapacitive Properties. Advanced Functional Materials, 2014, 24, 7440-7446.	7.8	281
77	Bridging the Gap in the Micellar Transformation from Cylinders to Vesicles. Small, 2014, 10, 1332-1340.	5.2	16
78	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398
79	Chiral Gold Nanowires with Boerdijk–Coxeter–Bernal Structure. Journal of the American Chemical Society, 2014, 136, 12746-12752.	6.6	64
80	Homo- and Co-polymerization of Polysytrene- <i>block</i> -Poly(acrylic acid)-Coated Metal Nanoparticles. ACS Nano, 2014, 8, 8063-8073.	7.3	28
81	Strategy for Nanoâ€Catalysis in a Fixedâ€Bed System. Advanced Materials, 2014, 26, 4151-4155.	11.1	95
82	Experimental Evidence of Chiral Gold Nanowires with Boerdijk-Coxeter-Bernal Structure by Atomic-Resolution Imaging. Microscopy and Microanalysis, 2014, 20, 1060-1061.	0.2	1
83	Three-Dimensional Plasmonic Nanoclusters. Nano Letters, 2013, 13, 4399-4403.	4.5	168
84	General Methodology of Using Oil-in-Water and Water-in-Oil Emulsions for Coiling Nanofilaments. Journal of the American Chemical Society, 2013, 135, 835-843.	6.6	51
85	Emerging chirality in nanoscience. Chemical Society Reviews, 2013, 42, 2930-2962.	18.7	468
86	Exploiting Core–Shell Synergy for Nanosynthesis and Mechanistic Investigation. Accounts of Chemical Research, 2013, 46, 1636-1646.	7.6	183
87	Forest of Gold Nanowires: A New Type of Nanocrystal Growth. ACS Nano, 2013, 7, 2733-2740.	7.3	126
88	Porous Graphene: Functional Freeâ€Standing Graphene Honeycomb Films (Adv. Funct. Mater. 23/2013). Advanced Functional Materials, 2013, 23, 2971-2971.	7.8	2
89	Functional Freeâ€Standing Graphene Honeycomb Films. Advanced Functional Materials, 2013, 23, 2972-2978.	7.8	116
90	Stirring in Suspension: Nanometerâ€Sized Magnetic Stir Bars. Angewandte Chemie - International Edition, 2013, 52, 8570-8573.	7.2	100

#	Article	IF	Citations
91	Investigating the Multiple Roles of Polyvinylpyrrolidone for a General Methodology of Oxide Encapsulation. Journal of the American Chemical Society, 2013, 135, 9099-9110.	6.6	181
92	Densityâ€Controlled Synthesis of Uniform ZnO Nanowires: Wideâ€Range Tunability and Growth Regime Transition. Small, 2013, 9, 2069-2075.	5.2	12
93	Preservation of Lattice Orientation in Coalescing Imperfectly Aligned Gold Nanowires by a Zipper Mechanism. Angewandte Chemie - International Edition, 2013, 52, 6019-6023.	7.2	36
94	Seeded growth of two-dimensional dendritic gold nanostructures. Chemical Communications, 2012, 48, 1440-1442.	2.2	30
95	An Unconventional Role of Ligand in Continuously Tuning of Metal–Metal Interfacial Strain. Journal of the American Chemical Society, 2012, 134, 2004-2007.	6.6	186
96	Induced Coiling Action: Exploring the Intrinsic Defects in Five-Fold Twinned Silver Nanowires. ACS Nano, 2012, 6, 6033-6039.	7.3	25
97	Measuring the Unusually Slow Ionic Diffusion in Polyaniline via Study of Yolk-Shell Nanostructures. Journal of the American Chemical Society, 2012, 134, 11243-11250.	6.6	44
98	Engineering "Hot―Nanoparticles for Surfaceâ€Enhanced Raman Scattering by Embedding Reporter Molecules in Metal Layers. Small, 2012, 8, 246-251.	5.2	128
99	Developing Mutually Encapsulating Materials for Versatile Syntheses of Multilayer Metal–Silica–Polymer Hybrid Nanostructures. Small, 2012, 8, 1857-1862.	5.2	20
100	Unconventional Chainâ€Growth Mode in the Assembly of Colloidal Gold Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 8021-8025.	7.2	131
101	A symmetry-adapted shell transformation of core–shell nanoparticles for binary nanoassembly. Chemical Communications, 2011, 47, 12533.	2.2	10
102	One-step synthesis of composite vesicles: Direct polymerization and in situ over-oxidation of thiophene. Chemical Science, 2011, 2, 2109.	3.7	125
103	Assembly of Colloidal Nanoparticles Directed by the Microstructures of Polycrystalline Ice. ACS Nano, 2011, 5, 8426-8433.	7.3	85
104	Controlling Reversible Elastic Deformation of Carbon Nanotube Rings. Journal of the American Chemical Society, 2011, 133, 9654-9657.	6.6	49
105	Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering. Nanoscale, 2011, 3, 1575.	2.8	39
106	Metal-layer-assisted coalescence of Au nanoparticles and its effect on diameter control in vapor-liquid-solid growth of oxide nanowires. Physical Review B, 2011, 83, .	1.1	31
107	Revisiting the St $ ilde{A}$ † ber Method: Inhomogeneity in Silica Shells. Journal of the American Chemical Society, 2011, 133, 11422-11425.	6.6	385
108	Chiral Transformation: From Single Nanowire to Double Helix. Journal of the American Chemical Society, 2011, 133, 20060-20063.	6.6	101

#	Article	IF	Citations
109	Individual Ag Nanowire Dimer for Surface-Enhanced Raman Scattering. Plasmonics, 2011, 6, 761-766.	1.8	13
110	Toroidal Micelles of Polystyreneâ€ <i>block</i> â€Poly(acrylic acid). Small, 2011, 7, 2721-2726.	5.2	57
111	Triple‣ayer (Au@Perylene)@Polyaniline Nanocomposite: Unconventional Growth of Faceted Organic Nanocrystals on Polycrystalline Au. Angewandte Chemie - International Edition, 2011, 50, 9898-9902.	7.2	55
112	Probing the Kinetics of Shortâ€Distance Drug Release from Nanocarriers to Nanoacceptors. Angewandte Chemie - International Edition, 2010, 49, 8426-8430.	7.2	39
113	Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 2010, 463, 1061-1065.	13.7	2,872
114	Polymer encapsulated AuNP SERS probes and ligand exchange kinetics monitored by SERS. , 2010, , .		0
115	Encapsulation of hydrophobic nanocrystals by diblock copolymers. , 2010, , .		0
116	Rational control of anisotropic nanocomposites for engineered nanocatives and SERS application. , 2010, , .		1
117	Rational assembly of nanoparticles clusters with specific formulae by colloidal reaction. , 2010, , .		0
118	Fabrication of complex nanostructures by colloidal chemistry. , 2010, , .		0
119	Tunable Upconversion Emissions from Lanthanide-doped Monodisperse β-NaYF ₄ Nanoparticles. Spectroscopy Letters, 2010, 43, 400-405.	0.5	47
120	Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers. Journal of the American Chemical Society, 2010, 132, 3644-3645.	6.6	382
121	A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nature Communications, 2010, 1, 87.	5.8	152
122	Reducing the Symmetry of Bimetallic Au@Ag Nanoparticles by Exploiting Eccentric Polymer Shells. Journal of the American Chemical Society, 2010, 132, 9537-9539.	6.6	121
123	Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints. ACS Nano, 2010, 4, 3087-3094.	7.3	203
124	3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture. Chemical Communications, 2010, 46, 7112.	2,2	51
125	Scalable Routes to Janus Auâ^'SiO ₂ and Ternary Agâ^'Auâ^'SiO ₂ Nanoparticles. Chemistry of Materials, 2010, 22, 3826-3828.	3.2	168
126	Probing the kinetics of ligand exchange on colloidal gold nanoparticles by surface-enhanced Raman scattering. Dalton Transactions, 2010, 39, 349-351.	1.6	38

#	Article	IF	CITATIONS
127	Mechanical Nanosprings: Induced Coiling and Uncoiling of Ultrathin Au Nanowires. Journal of the American Chemical Society, 2010, 132, 11920-11922.	6.6	99
128	Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Physical Chemistry Chemical Physics, 2010, 12, 11850.	1.3	144
129	Development of Polymerâ€Encapsulated Metal Nanoparticles as Surfaceâ€Enhanced Raman Scattering Probes. Small, 2009, 5, 198-202.	5.2	145
130	Fabrication of Polymer Nanocavities with Tailored Openings. ACS Nano, 2009, 3, 3469-3474.	7.3	88
131	Facile fabrication of triple-layer (Au@Ag)@polypyrrole core–shell and (Au@H2O)@polypyrrole yolk–shell nanostructures. Chemical Communications, 2009, , 1653.	2.2	70
132	Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. Journal of Materials Chemistry, 2009, 19, 3286.	6.7	118
133	High-Purity Separation of Gold Nanoparticle Dimers and Trimers. Journal of the American Chemical Society, 2009, 131, 4218-4219.	6.6	267
134	Polymer-Encapsulated Gold-Nanoparticle Dimers: Facile Preparation and Catalytical Application in Guided Growth of Dimeric ZnO-Nanowires. Nano Letters, 2008, 8, 2643-2647.	4.5	155
135	Controlled Assembly of Eccentrically Encapsulated Gold Nanoparticles. Journal of the American Chemical Society, 2008, 130, 11858-11859.	6.6	201
136	Tunable wettability in surface-modified ZnO-based hierarchical nanostructures. Applied Physics Letters, 2008, 92, .	1.5	69
137	Improving the Photostability of [Ru(bpy)3]2+ by Embedding in Silica. ChemPhotoChem, 0, , .	1.5	1