Hiroyasu Ogino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945500/publications.pdf

Version: 2024-02-01

76 papers

2,502 citations

236925 25 h-index 206112 48 g-index

76 all docs 76
docs citations

76 times ranked 2173 citing authors

#	Article	IF	CITATIONS
1	Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 2010, 48, 270-282.	3.6	442
2	Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering, 2001, 91, 109-116.	2.2	261
3	Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. Journal of Bioscience and Bioengineering, 2000, 89, 451-457.	2.2	136
4	Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. Journal of Bioscience and Bioengineering, 1999, 87, 61-68.	2.2	102
5	Organic-Solvent-Tolerant Bacterium Which Secretes Organic-Solvent-Stable Lipolytic Enzyme. Applied and Environmental Microbiology, 1994, 60, 3884-3886.	3.1	101
6	Role of Intermolecular Disulfide Bonds of the Organic Solvent-Stable PST-01 Protease in Its Organic Solvent Stability. Applied and Environmental Microbiology, 2001, 67, 942-947.	3.1	75
7	Effect of Additives on Refolding of a Denatured Protein. Biotechnology Progress, 1998, 14, 601-606.	2.6	73
8	Simulation of a Particle Formation Stage in the Dispersion Polymerization of Styrene. Macromolecules, 2001, 34, 3261-3270.	4.8	57
9	Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochemical and Biophysical Research Communications, 2007, 358, 1028-1033.	2.1	54
10	Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochemical Engineering Journal, 1999, 4, 1-6.	3.6	53
11	Purification and characterization of Chromobacterium sp. DS-1 cholesterol oxidase with thermal, organic solvent, and detergent tolerance. Applied Microbiology and Biotechnology, 2008, 80, 59-70.	3.6	47
12	Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochemical and Biophysical Research Communications, 2010, 400, 384-388.	2.1	46
13	Enhanced <scp>d</scp> â€lactic acid production by recombinant <i>Saccharomyces cerevisiae</i> following optimization of the global metabolic pathway. Biotechnology and Bioengineering, 2017, 114, 2075-2084.	3.3	46
14	Peptide synthesis catalyzed by organic solvent-stable protease from Pseudomonas aeruginosa PST-01 in monophasic aqueous-organic solvent systems. Journal of Bioscience and Bioengineering, 1999, 88, 513-518.	2.2	42
15	Enhancement of the organic solventâ€stability of the LSTâ€03 lipase by directed evolution. Biotechnology Progress, 2009, 25, 1605-1611.	2.6	42
16	Toward the construction of a technology platform for chemicals production from methanol: d-lactic acid production from methanol by an engineered yeast Pichia pastoris. World Journal of Microbiology and Biotechnology, 2019, 35, 37.	3.6	41
17	Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World Journal of Microbiology and Biotechnology, 2017, 33, 99.	3.6	38
18	Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25. Extremophiles, 2007, 11, 781-788.	2.3	37

#	Article	IF	CITATIONS
19	Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochemical Engineering Journal, 2017, 128, 76-82.	3.6	37
20	Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. Journal of Bioscience and Bioengineering, 2001, 91, 245-250.	2.2	36
21	Stabilities and Conformational Transitions of Various Proteases in the Presence of an Organic Solvent. Biotechnology Progress, 2007, 23, 155-161.	2.6	30
22	Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles, 2007, 11, 809-817.	2.3	30
23	Cloning and sequencing of a gene of organic solvent-stable protease secreted from Pseudomonas aeruginosa PST-01 and its expression in Escherichia coli. Biochemical Engineering Journal, 2000, 5, 191-200.	3.6	29
24	Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: Enhancement in d-lactic acid carbon yield. Journal of Bioscience and Bioengineering, 2015, 119, 65-71.	2.2	29
25	Cloning, sequence analysis, and expression of a gene encoding Chromobacterium sp. DS-1 cholesterol oxidase. Applied Microbiology and Biotechnology, 2009, 82, 479-490.	3.6	27
26	Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution. Applied Biochemistry and Biotechnology, 2019, 189, 810-821.	2.9	27
27	Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail Î-integration. Bioresource Technology, 2017, 245, 1558-1566.	9.6	25
28	Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient d-lactic acid production. Applied Microbiology and Biotechnology, 2020, 104, 9147-9158.	3.6	25
29	Improvement of the stability and activity of the BPO-A1 haloperoxidase from Streptomyces aureofaciens by directed evolution. Journal of Biotechnology, 2014, 192, 248-254.	3.8	23
30	Secretory overexpression of the endoglucanase by Saccharomyces cerevisiae via CRISPR-Î ⁻ integration and multiple promoter shuffling. Enzyme and Microbial Technology, 2019, 121, 17-22.	3.2	23
31	The synthetic rate of dipeptide catalyzed by organic solvent-stable protease from Pseudomonas aeruginosa PST-01 in the presence of water-soluble organic solvents. Biochemical Engineering Journal, 2000, 5, 219-223.	3.6	22
32	Cloning, Expression, and Characterization of a Lipolytic Enzyme Gene <i>(lip8)</i> from <i>Pseudomonas aeruginosa</i> LST-03. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 212-223.	1.0	22
33	Global Metabolic Engineering of Glycolytic Pathway <i>via</i> Multicopy Integration in <i>Saccharomyces cerevisiae</i> ACS Synthetic Biology, 2017, 6, 659-666.	3.8	22
34	CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World Journal of Microbiology and Biotechnology, 2019, 35, 111.	3.6	22
35	Chemical treatments for modification and immobilization to improve the solvent-stability of lipase. World Journal of Microbiology and Biotechnology, 2019, 35, 193.	3.6	19
36	Hydrogen Production from Glucose by Anaerobes. Biotechnology Progress, 2005, 21, 1786-1788.	2.6	18

#	Article	lF	Citations
37	Construction of yeast producing patchoulol by global metabolic engineering strategy. Biotechnology and Bioengineering, 2020, 117, 1348-1356.	3.3	18
38	Peptide Synthesis of Aspartame Precursor Using Organic-Solvent-Stable PST-01 Protease in Monophasic Aqueous-Organic Solvent Systems. Biotechnology Progress, 2007, 23, 820-823.	2.6	18
39	Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease. Protein Engineering, Design and Selection, 2010, 23, 147-152.	2.1	17
40	Random mutagenesis and selection of organic solventâ€stable haloperoxidase from <i>Streptomyces aureofaciens</i> . Biotechnology Progress, 2015, 31, 917-924.	2.6	16
41	Modulation of gene expression by cocktail $\hat{\Gamma}$ -integration to improve carotenoid production in Saccharomyces cerevisiae. Bioresource Technology, 2018, 268, 616-621.	9.6	16
42	Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran. Biochemical Engineering Journal, 2019, 142, 1-6.	3.6	16
43	N-linked glycosylation of thermostable lipase from Bacillus thermocatenulatus to improve organic solvent stability. Enzyme and Microbial Technology, 2020, 132, 109416.	3.2	16
44	Lipase Production in Two-Step Fed-Batch Culture of Organic Solvent-Tolerant Pseudomonas aeruginosa LST-03 Journal of Bioscience and Bioengineering, 2001, 91, 245-250.	2.2	16
45	Simulation of Particle Growth in the Dispersion Polymerization of Styrene: The Termination Rate Constant in Particles. Macromolecular Theory and Simulations, 2001, 10, 54-62.	1.4	15
46	Combinatorial library strategy for strong overexpression of the lipase from Geobacillus thermocatenulatus on the cell surface of yeast Pichia pastoris. Biochemical Engineering Journal, 2016, 113, 7-11.	3.6	15
47	Synthesis of Amphiphilic Polymer Particles for Lipase Immobilization. Macromolecular Chemistry and Physics, 2001, 202, 3189-3197.	2.2	12
48	Screening, purification, and characterization of a leather-degrading protease. Biochemical Engineering Journal, 2008, 38, 234-240.	3.6	11
49	Modification of lipase from Candida cylindracea with dextran using the borane-pyridine complex to improve organic solvent stability. Journal of Biotechnology, 2019, 296, 1-6.	3.8	11
50	Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2022, 38, 38.	3.6	11
51	Synthesis of Amphiphilic Polymer Particles by Seed Polymerization and Their Application for Lipase Immobilization. Macromolecular Chemistry and Physics, 2002, 203, 284-293.	2.2	10
52	Kinetics and mechanism of a reaction catalyzed by PST-01 protease from Pseudomonas aeruginosa PST-01. Biotechnology and Bioengineering, 2004, 86, 365-373.	3.3	10
53	Development of sucrose-complexed lipase to improve its transesterification activity and stability in organic solvents. Biochemical Engineering Journal, 2017, 121, 83-87.	3.6	10
54	Synthesis of amphiphilic particles in the presence of inert solvents and their application to lipase immobilization. Journal of Polymer Science Part A, 2002, 40, 874-884.	2.3	8

#	Article	IF	Citations
55	Refolding of a recombinant organic solvent-stable lipase, which is overexpressed and forms an inclusion body, and activation with lipase-specific foldase. Biochemical Engineering Journal, 2008, 40, 507-511.	3.6	8
56	A Maltooligosaccharide-Forming Amylase Gene from <i>Brachybacterium </i> sp. Strain LB25: Cloning and Expression in <i>Escherichia coli </i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 2444-2447.	1.3	8
57	Enzyme immobilization on amphiphilic polymer particles having grafted polyionic polymer chains. Biochemical Engineering Journal, 2009, 48, 6-12.	3.6	8
58	Rapid and stable production of 2,3-butanediol by an engineered <i>Saccharomyces cerevisiae</i> strain in a continuous airlift bioreactor. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 305-311.	3.0	8
59	Enhancement of the catalytic activity of d-lactate dehydrogenase from Sporolactobacillus laevolacticus by site-directed mutagenesis. Biochemical Engineering Journal, 2018, 133, 214-218.	3.6	7
60	Peptide Synthesis of Aspartame Precursor Using Organic-Solvent-Stable PST-01 Protease in Monophasic Aqueous-Organic Solvent Systems. Biotechnology Progress, 2007, 23, 820-823.	2.6	7
61	Characterization of Recombinant Glyoxylate Reductase from Thermophile Thermus thermophilus HB27. Biotechnology Progress, 2008, 24, 321-325.	2.6	6
62	Hyper-activation of foldase-dependent lipase with lipase-specific foldase. Journal of Biotechnology, 2013, 166, 20-24.	3.8	6
63	Production mechanism of active species on the oxidative bromination following perhydrolase activity. Journal of Physical Organic Chemistry, 2016, 29, 84-91.	1.9	6
64	Identification of genes responsible for reducing palladium ion in Escherichia coli. Journal of Biotechnology, 2020, 324, 7-10.	3.8	6
65	Improvement of lactic acid tolerance by cocktail l´-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2021, 37, 19.	3.6	6
66	Secretory Overexpression of <i>Bacillus thermocatenulatus</i> Lipase in <i>Saccharomyces cerevisiae</i> Using Combinatorial Library Strategy. Biotechnology Journal, 2018, 13, e1700409.	3.5	5
67	Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy. Journal of Bioscience and Bioengineering, 2021, 131, 283-289.	2.2	5
68	Kinetics of the polymerizable azo initiator 2,2′â€azobis[<i>N</i> à€(2â€propenyl)â€2â€methylpropionamide] a application to graft copolymerization. Journal of Applied Polymer Science, 2010, 118, 2425-2433.	ind its 2.6	2
69	Subcritical Water Hydrolysis of Gelatin in Used X-Ray and Lith Films. Journal of Chemical Engineering of Japan, 2011, 44, 963-968.	0.6	2
70	Synthesis and Radical Polymerization Kinetics of Amphiphilic Methacrylic Monomers Having 2-[p-(1,1,3,3-Tetramethyl-Butyl)Phenoxy-Polyethoxy]Ethyl Group Journal of Chemical Engineering of Japan, 2001, 34, 388-395.	0.6	2
71	A useful propionate cofactor enhancing activity for organic solvent-tolerant recombinant metal-free bromoperoxidase (perhydrolase) from Streptomyces aureofaciens. Biochemical and Biophysical Research Communications, 2019, 516, 327-332.	2.1	1
72	The synthesis of l-glycyl-l-tyrosine derivatives using organic-solvent stable PST-01 protease from Pseudomonas aeruginosa PST-01. Process Biochemistry, 2021, 102, 186-189.	3.7	1

#	Article	IF	CITATIONS
73	Effect of Calcium Ions on the Activity and Stability of the Recombinant LST-03 Lipase. Kagaku Kogaku Ronbunshu, 2010, 36, 143-148.	0.3	1
74	Synthesis of Oil Absorbent Polymer Material Having Hydrophobic Group and Evaluation of Their Ability. Kagaku Kogaku Ronbunshu, 2010, 36, 526-531.	0.3	1
75	Development of Novel Immobilization Supports of Lipase for Reactions in Organic Media: Seed Polymerization of Amphiphilic 2-[p-(1,1,3,3-Tetramethyl-Butyl) Phenoxy-Polyethoxy] Ethyl Methacrylate Macromonomers Journal of Chemical Engineering of Japan, 2002, 35, 519-526.	0.6	1
76	Kinetics of Solution Polymerization and Seed Polymerization of 2-[p-(1,1,3,3-Tetramethyl-Butyl) Phenoxy-Polyethoxy] Ethyl Methacrylate Macromonomers. Journal of Chemical Engineering of Japan, 2010, 43, 767-776.	0.6	0