Cornelis P Tensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deregulation of JAK2 signaling underlies primary cutaneous CD8 ⁺ aggressive epidermotropic cytotoxic T-cell lymphoma. Haematologica, 2022, 107, 702-714.	1.7	20
2	Whole-genome profiling of primary cutaneous anaplastic large cell lymphoma. Haematologica, 2022, 107, 1619-1632.	1.7	9
3	Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood, 2022, 139, 15-33.	0.6	28
4	Cell-of-origin classification using the Hans and Lymph2Cx algorithms in primary cutaneous large B-cell lymphomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 480, 667-675.	1.4	12
5	Tumor Clone Frequency Calculation Using High-Throughput Sequencing of the TCRÎ ² Gene in Patients with Folliculotropic Mycosis Fungoides. Journal of Investigative Dermatology, 2022, 142, 2544-2546.e2.	0.3	0
6	Serum and cutaneous transcriptional expression levels of IL31 are minimal in cutaneous T cell lymphoma variants. Biochemistry and Biophysics Reports, 2021, 26, 101007.	0.7	2
7	Improved Sézary cell detection and novel insights into immunophenotypic and molecular heterogeneity in Sézary syndrome. Blood, 2021, 138, 2539-2554.	0.6	28
8	Cutaneous T cell lymphoma. Nature Reviews Disease Primers, 2021, 7, 61.	18.1	70
9	Wholeâ€genome analysis uncovers recurrent <i>IKZF1</i> inactivation and aberrant cell adhesion in blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes and Cancer, 2020, 59, 295-308.	1.5	14
10	Cucurbitacin E and I target the JAK/STAT pathway and induce apoptosis in Sézary cells. Biochemistry and Biophysics Reports, 2020, 24, 100832.	0.7	12
11	Clinical and pathogenic aspects of the severe cutaneous adverse reaction epidermal necrolysis (EN). Journal of the European Academy of Dermatology and Venereology, 2020, 34, 1957-1971.	1.3	25
12	Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire. Journal of Investigative Dermatology, 2019, 139, 2195-2203.	0.3	12
13	<scp>RNA</scp> â€seq analysis of Lgr6 ⁺ stem cells and identification of an Lgr6 isoform. Experimental Dermatology, 2018, 27, 1172-1175.	1.4	1
14	Arrayâ€based CGH of primary cutaneous CD8+ aggressive EPIDERMOâ€ŧropic cytotoxic T ell lymphoma. Genes Chromosomes and Cancer, 2018, 57, 622-629.	1.5	11
15	An Integrated Data Resource for Genomic AnalysisÂof Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2018, 138, 2681-2683.	0.3	38
16	Pathogenesis of Skin Carcinomas and a Stem Cell as Focal Origin. Frontiers in Medicine, 2018, 5, 165.	1.2	14
17	Genomic analysis reveals recurrent deletion of JAKâ€STAT signaling inhibitors <i>HNRNPK</i> and <i>SOCS1</i> in mycosis fungoides. Genes Chromosomes and Cancer, 2018, 57, 653-664.	1.5	56
18	Molecular advances in cutaneous T-cell lymphoma. Seminars in Cutaneous Medicine and Surgery, 2018, 37. 81-86.	1.6	22

#	Article	IF	CITATIONS
19	Primary Cutaneous Follicle Center Lymphomas (PCFCL) Express Heavily Mutated B-Cell Receptors with Acquired N-Glycosylation Motifs and Lack Ongoing Somatic Hypermutation. Blood, 2018, 132, 1573-1573.	0.6	3
20	Micro RNA â€155 potentiates tumour development in mycosis fungoides. British Journal of Dermatology, 2017, 177, 618-620.	1.4	6
21	Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sézary syndrome. Oncotarget, 2017, 8, 39627-39639.	0.8	41
22	Evaluation of Immunophenotypic and Molecular Biomarkers for Sézary Syndrome Using Standard Operating Procedures: A Multicenter Study of 59 Patients. Journal of Investigative Dermatology, 2016, 136, 1364-1372.	0.3	78
23	Epigenomic Analysis of Sézary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies DiagnosticÂMarkers. Journal of Investigative Dermatology, 2016, 136, 1876-1884.	0.3	46
24	No TP63 rearrangements in a selected group of primary cutaneous CD30+ lymphoproliferative disorders with aggressive clinical course. Blood, 2016, 128, 141-143.	0.6	12
25	Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood, 2016, 127, 3040-3053.	0.6	60
26	Lgr5+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors. Oncotarget, 2016, 7, 52085-52094.	0.8	8
27	Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors. Oncotarget, 2016, 7, 86740-86754.	0.8	7
28	The B-Cell Receptor of Primary Cutaneous Follicle Center Lymphoma: Implications for Pathogenesis. Blood, 2016, 128, 4136-4136.	0.6	0
29	Antigen-Independent, Autonomous B-Cell Receptor Signaling As a Dominant Candidate Oncogenic Mechanism in ABC DLBCL. Blood, 2016, 128, 778-778.	0.6	1
30	Diagnostic and prognostic significance of <i>CDKN2A</i> / <i>CDKN2B</i> deletions in patients with transformed mycosis fungoides and primary cutaneous CD30-positive lymphoproliferative disease. British Journal of Dermatology, 2015, 172, 784-788.	1.4	18
31	PLCG1 Gene Mutations in Cutaneous T-Cell Lymphomas Revisited. Journal of Investigative Dermatology, 2015, 135, 2153-2154.	0.3	9
32	The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nature Genetics, 2015, 47, 1465-1470.	9.4	322
33	EPHA4 is overexpressed but not functionally active in Sézary syndrome. Oncotarget, 2015, 6, 31868-31876.	0.8	6
34	The Mutational Landscape of CTCL and Sezary Syndrome. Blood, 2015, 126, 573-573.	0.6	17
35	Nuclear Factor-κB Pathway–Activating Gene Aberrancies in Primary Cutaneous Large B-Cell Lymphoma, Leg Type. Journal of Investigative Dermatology, 2014, 134, 290-292.	0.3	54

#	Article	IF	CITATIONS
37	Exploring the IL-21–STAT3 Axis as Therapeutic Target for Sézary Syndrome. Journal of Investigative Dermatology, 2014, 134, 2639-2647.	0.3	23
38	Performance of the N/TERT epidermal model for skin sensitizer identification via Nrf2-Keap1-ARE pathway activation. Toxicology in Vitro, 2014, 28, 982-989.	1.1	12
39	Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients. BMC Cancer, 2013, 13, 58.	1.1	83
40	Genomeâ€wide promoter methylation analysis identifies epigenetic silencing of <scp><i>MAPK</i></scp> <i>13</i> in primary cutaneous melanoma. Pigment Cell and Melanoma Research, 2013, 26, 542-554.	1.5	52
41	Dietary Immunosuppressants Do Not Enhance UV-Induced Skin Carcinogenesis, and Reveal Discordance between p53-Mutant Early Clones and Carcinomas. Cancer Prevention Research, 2013, 6, 129-138.	0.7	9
42	No Acceleration of UV-Induced Skin Carcinogenesis from Evenly Spread Dietary Intake of Cyclosporine in Contrast to Oral Bolus Dosages. Transplantation, 2013, 96, 871-876.	0.5	4
43	MicroRNA Profiling of Primary Cutaneous Large B-Cell Lymphomas. PLoS ONE, 2013, 8, e82471.	1.1	20
44	Autocrine IL-21 Stimulation Is Involved in the Maintenance of Constitutive STAT3 Activation in Sézary Syndrome. Journal of Investigative Dermatology, 2012, 132, 440-447.	0.3	37
45	Deep-Sequencing Analysis Reveals that the miR-199a2/214 Cluster within DNM3os Represents the Vast Majority of Aberrantly Expressed MicroRNAs in Sézary Syndrome. Journal of Investigative Dermatology, 2012, 132, 1520-1522.	0.3	42
46	NOTCH1 Signaling as a Therapeutic Target in Sézary Syndrome. Journal of Investigative Dermatology, 2012, 132, 2810-2817.	0.3	18
47	A novel mouse model for <scp>S</scp> ézary <scp>S</scp> yndrome using xenotransplantation of <scp>S</scp> ézary cells into immunodeficient <scp>RAG</scp> 2 ^{â^{^*}/â[^]} Î ³ c ^{â^{^*}/â[^]} mice Experimental Dermatology, 2012, 21, 706-709.	2.1.4	18
48	A Meta-Analysis of Gene Expression Data Identifies a Molecular Signature Characteristic for Tumor-Stage Mycosis Fungoides. Journal of Investigative Dermatology, 2012, 132, 2050-2059.	0.3	75
49	Rapamycin impairs UV induction of mutantâ€p53 overexpressing cell clusters without affecting tumor onset. International Journal of Cancer, 2012, 131, 1267-1276.	2.3	14
50	Fragment based lead discovery of small molecule inhibitors for the EPHA4 receptor tyrosine kinase. European Journal of Medicinal Chemistry, 2012, 47, 493-500.	2.6	23
51	Primary cutaneous anaplastic large cell lymphoma shows a distinct mi <scp>RNA</scp> expression profile and reveals differences from tumorâ€stage mycosis fungoides. Experimental Dermatology, 2012, 21, 632-634.	1.4	47
52	miRNA expression profiling of mycosis fungoides. Molecular Oncology, 2011, 5, 273-280.	2.1	91
53	PTPRG (protein tyrosine phosphatase, receptor type, G). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011, , .	0.1	0
54	Functional characterization of cancerâ€associated fibroblasts of human cutaneous squamous cell carcinoma. Experimental Dermatology, 2011, 20, 737-742.	1.4	29

#	Article	IF	CITATIONS
55	Crystal structure of the EphA4 protein tyrosine kinase domain in the apo- and dasatinib-bound state. FEBS Letters, 2011, 585, 3593-3599.	1.3	21
56	MicroRNA-21 Expression in CD4+ T Cells Is Regulated by STAT3 and Is Pathologically Involved in Sézary Syndrome. Journal of Investigative Dermatology, 2011, 131, 762-768.	0.3	116
57	Early and late effects of the immunosuppressants rapamycin and mycophenolate mofetil on UV carcinogenesis. International Journal of Cancer, 2010, 127, 796-804.	2.3	37
58	Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: Differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatric Blood and Cancer, 2010, 55, 344-348.	0.8	45
59	Oligonucleotide Array-CGH Identifies Genomic Subgroups and Prognostic Markers for Tumor Stage Mycosis Fungoides. Journal of Investigative Dermatology, 2010, 130, 1126-1135.	0.3	71
60	Cutaneous Anaplastic Large Cell Lymphoma and Peripheral T-Cell Lymphoma NOS Show Distinct Chromosomal Alterations and Differential Expression of Chemokine Receptors and Apoptosis Regulators. Journal of Investigative Dermatology, 2010, 130, 563-575.	0.3	62
61	The Human Cytomegalovirus–Encoded Chemokine Receptor US28 Promotes Angiogenesis and Tumor Formation via Cyclooxygenase-2. Cancer Research, 2009, 69, 2861-2869.	0.4	139
62	Fine-Mapping Chromosomal Loss at 9p21: Correlation with Prognosis in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type. Journal of Investigative Dermatology, 2009, 129, 1149-1155.	0.3	84
63	Azathioprine-Induced Microsatellite Instability Is Not Observed in Skin Carcinomas of Organ Transplant Recipients. Journal of Investigative Dermatology, 2009, 129, 1307-1309.	0.3	6
64	Reduced ILâ€1Ra/ILâ€1 ratio in ultraviolet Bâ€exposed skin of patients with polymorphic light eruption. Experimental Dermatology, 2009, 18, 212-217.	1.4	21
65	An <i>in vitro</i> threeâ€dimensional model of primary human cutaneous squamous cell carcinoma. Experimental Dermatology, 2009, 18, 849-856.	1.4	46
66	Oncogenomic analysis of mycosis fungoides reveals major differences with Sézary syndrome. Blood, 2009, 113, 127-136.	0.6	188
67	Profiling of apoptosis genes identifies distinct types of primary cutaneous large B cell lymphoma. Journal of Pathology, 2008, 215, 340-346.	2.1	20
68	A genomic and expression study of APâ€1 in primary cutaneous Tâ€cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS. Journal of Cutaneous Pathology, 2008, 35, 899-910.	0.7	57
69	Cucurbitacin I Inhibits Stat3 and Induces Apoptosis in Sézary Cells. Journal of Investigative Dermatology, 2008, 128, 1691-1695.	0.3	74
70	Novel and Highly Recurrent Chromosomal Alterations in Selŧary Syndrome. Cancer Research, 2008, 68, 2689-2698.	0.4	176
71	Noncompetitive Antagonism and Inverse Agonism as Mechanism of Action of Nonpeptidergic Antagonists at Primate and Rodent CXCR3 Chemokine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 544-555.	1.3	57
72	Cloning and characterization of dominant negative splice variants of the human histamine H4 receptor. Biochemical Journal, 2008, 414, 121-131.	1.7	61

#	Article	IF	CITATIONS
73	Genome Wide Analysis of 41 Mycosis Fungoides Tumor Stage Using Array Comparative Genomic Hybridization Technology Blood, 2008, 112, 1769-1769.	0.6	0
74	Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood, 2007, 109, 1720-1727.	0.6	137
75	Array-Based Comparative Genomic Hybridization Analysis Reveals Recurrent Chromosomal Alterations and Prognostic Parameters in Primary Cutaneous Large B-Cell Lymphoma. Journal of Clinical Oncology, 2006, 24, 296-305.	0.8	125
76	Primary cutaneous follicle center lymphoma and primary cutaneous large B-cell lymphoma, leg type, are both targeted by aberrant somatic hypermutation but demonstrate differential expression of AID. Blood, 2006, 107, 4926-4929.	0.6	51
77	Proteomic Analysis of Uveal Melanoma Reveals Novel Potential Markers Involved in Tumor Progression. , 2006, 47, 786.		32
78	The CXCR3 Targeting Chemokine CXCL11 Has Potent Antitumor Activity In Vivo Involving Attraction of CD8+ T Lymphocytes But Not Inhibition of Angiogenesis. Journal of Immunotherapy, 2005, 28, 343-351.	1.2	114
79	Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood, 2005, 105, 3671-3678.	0.6	266
80	Proteomic Profiling Identifies an UV-Induced Activation of Cofilin-1 and Destrin in Human Epidermis. Journal of Investigative Dermatology, 2005, 124, 818-824.	0.3	35
81	A Lack of Birbeck Granules in Langerhans Cells Is Associated with a Naturally Occurring Point Mutation in the Human Langerin Gene. Journal of Investigative Dermatology, 2005, 124, 714-717.	0.3	51
82	Aberrant DNA Methylation in Cutaneous Malignancies. Seminars in Oncology, 2005, 32, 479-487.	0.8	69
83	Synthesis and structure–activity relationship of 3-phenyl-3H-quinazolin-4-one derivatives as CXCR3 chemokine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2910-2913.	1.0	32
84	Epigenetic Profiling of Cutaneous T-Cell Lymphoma: Promoter Hypermethylation of Multiple Tumor Suppressor Genes Including BCL7a, PTPRG, and p73. Journal of Clinical Oncology, 2005, 23, 3886-3896.	0.8	224
85	Furin Is a Chemokine-modifying Enzyme. Journal of Biological Chemistry, 2004, 279, 13402-13411.	1.6	30
86	Aberrant Expression of the Tyrosine Kinase Receptor EphA4 and the Transcription Factor Twist in Sézary Syndrome Identified by Gene Expression Analysis. Cancer Research, 2004, 64, 5578-5586.	0.4	155
87	Chromosomal Aberration Patterns Differ in Subtypes of Primary Cutaneous B Cell Lymphomas. Journal of Investigative Dermatology, 2004, 122, 1495-1502.	0.3	67
88	Increased CCL27–CCR10 expression in allergic contact dermatitis: implications for local skin memory. Journal of Pathology, 2004, 204, 39-46.	2.1	77
89	Morphological changes during dendritic cell maturation correlate with cofilin activation and translocation to the cell membrane. European Journal of Immunology, 2004, 34, 156-164.	1.6	70
90	Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. International Journal of Cancer, 2003, 106, 472-479.	2.3	86

#	Article	IF	CITATIONS
91	CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C–dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/Pl-3 kinase. Blood, 2003, 102, 1959-1965.	0.6	161
92	Differential Expression of Thymus and Activation Regulated Chemokine and Its Receptor CCR4 in Nodal and Cutaneous Anaplastic Large-Cell Lymphomas and Hodgkin's Disease. Modern Pathology, 2002, 15, 838-844.	2.9	38
93	Proteomic analysis of skin irritation reveals the induction of HSP27 by sodium lauryl sulphate in human skin. British Journal of Dermatology, 2002, 146, 777-785.	1.4	45
94	A novel splice variant of the Fas gene in patients with cutaneous T-cell lymphoma. Cancer Research, 2002, 62, 5389-92.	0.4	48
95	NPY in invertebrates: molecular answers to altered functions during evolution. Peptides, 2001, 22, 309-315.	1.2	86
96	The antipsoriatic drug dimethylfumarate strongly suppresses chemokine production in human keratinocytes and peripheral blood mononuclear cells. British Journal of Dermatology, 2001, 144, 1114-1120.	1.4	111
97	Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity. FEBS Journal, 2001, 268, 4992-4999.	0.2	21
98	Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. Journal of Pathology, 2001, 194, 398-405.	2.1	332
99	Discrepancy Between Molecular Structure and Ligand Selectivity of a Testicular Follicle-Stimulating Hormone Receptor of the African Catfish (Clarias gariepinus)1. Biology of Reproduction, 2001, 64, 1633-1643.	1.2	153
100	Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. , 2001, 194, 398.		1
101	Human IP-9: A Keratinocyte-Derived High Affinity CXC-Chemokine Ligand for the IP-10/Mig Receptor (CXCR3)1. Journal of Investigative Dermatology, 1999, 112, 716-722.	0.3	140
102	The CXCR3 Activating Chemokines IP-10, Mig, and IP-9 are Expressed in Allergic but not in Irritant Patch Test Reactions. Journal of Investigative Dermatology, 1999, 113, 574-578.	0.3	116
103	Genomic organization, sequence and transcriptional regulation of the human CXCL 11 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 167-172.	2.4	48
104	Expression of MCP-1 by Reactive Astrocytes in Demyelinating Multiple Sclerosis Lesions. American Journal of Pathology, 1999, 154, 45-51.	1.9	238
105	IP-10 mRNA EXPRESSION IN CULTURED KERATINOCYTES IS SUPPRESSED BY INHIBITION OF PROTEIN KINASE-C AND TYROSINE KINASE AND ELEVATION OF cAMP. Cytokine, 1999, 11, 469-475.	1.4	14
106	Regulation of CD163 on human macrophages: cross-linking of CD163 induces signaling and activation. Journal of Leukocyte Biology, 1999, 66, 858-866.	1.5	193
107	Parasites flicking the NPY gene on the host's switchboard: why NPY?. FASEB Journal, 1999, 13, 1972-1984.	0.2	32
108	Molecular Cloning of a Gonadotropin-Releasing Hormone Receptor cDNA from the Red Sea Bream, Pagrus major. Annals of the New York Academy of Sciences, 1998, 839, 518-519.	1.8	1

#	Article	IF	CITATIONS
109	Transmitter identification in neurons involved in male copulation behavior inLymnaea stagnalis. Journal of Comparative Neurology, 1998, 395, 440-449.	0.9	17
110	Chemokine IP-10 expression in cultured human keratinocytes. Archives of Dermatological Research, 1998, 290, 335-341.	1.1	56
111	Molecular cloning and characterization of an invertebrate homologue of a neuropeptide Y receptor. European Journal of Neuroscience, 1998, 10, 3409-3416.	1.2	64
112	Epidermal Interferon-Î ³ Inducible Protein-10 (IP-10) and Monokine Induced by Î ³ -Interferon (Mig) but not IL-8 mRNA Expression is Associated with Epidermotropism in Cutaneous T Cell Lymphomas. Journal of Investigative Dermatology, 1998, 111, 222-226.	0.3	67
113	The <i>Lymnaea</i> Cardioexcitatory Peptide (LyCEP) Receptor: A G-Protein–Coupled Receptor for a Novel Member of the RFamide Neuropeptide Family. Journal of Neuroscience, 1998, 18, 9812-9821.	1.7	71
114	Differences in Structure–Function Relations between Nonmammalian and Mammalian Gonadotropin-Releasing Hormone Receptors. Biochemical and Biophysical Research Communications, 1997, 238, 517-522.	1.0	56
115	Cloning, Characterization, and Expression of a G-Protein-Coupled Receptor from <i>Lymnaea stagnalis</i> and Identification of a Leucokinin-Like Peptide, PSFHSWSamide, as Its Endogenous Ligand. Journal of Neuroscience, 1997, 17, 1197-1205.	1.7	83
116	Distinct Efficacies for Two Endogenous Ligands on a Single Cognate Gonadoliberin Receptor. FEBS Journal, 1997, 243, 134-140.	0.2	140
117	Title is missing!. Fish Physiology and Biochemistry, 1997, 17, 99-108.	0.9	41
118	Title is missing!. Fish Physiology and Biochemistry, 1997, 17, 45-51.	0.9	19
119	Co-evolution of Ligand-Receptor Pairs in the Vasopressin/Oxytocin Superfamily of Bioactive Peptides. Journal of Biological Chemistry, 1996, 271, 3619-3626.	1.6	104
120	A novel G protein-coupled receptor mediating both vasopressin- and oxytocin-like functions of Lys-conopressin in Lymnaea stagnalis. Neuron, 1995, 15, 897-908.	3.8	82
121	Site-Directed Mutagenesis of the Histamine H1-Receptor Reveals a Selective Interaction of Asparagine207 with Subclasses of H1-Receptor Agonists. Biochemical and Biophysical Research Communications, 1994, 201, 295-301.	1.0	74
122	Evidence for a conformational polymorphism of invertebrate neurohormones. D-amino acid residue in crustacean hyperglycemic peptides. Journal of Biological Chemistry, 1994, 269, 18295-18298.	1.6	139
123	Molecular Cloning and Neuronal Expression of a Novel Type of a G-Protein-Coupled Receptor With Ldl Binding Motifs From the Pond Snail Lymnaea Stagnalis. Animal Biology, 1993, 44, 463-472.	0.4	0
124	Localization of messenger RNAs encoding crustacean hyperglycemic hormone and gonad inhibiting hormone in the X-organ sinus gland complex of the lobster Homarus americanus. Neuroscience, 1992, 51, 121-128.	1.1	45
125	Comparative characterization of hyperglycemic neuropeptides from the lobster Homarus americanus. Peptides, 1991, 12, 241-249.	1.2	20
126	Amino acid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, Orconectes limousus: Emergence of a novel neuropeptide family. Peptides, 1991, 12, 909-913.	1.2	91

#	Article	IF	CITATIONS
127	Isolation and amino acid sequence of crustacean hyperglycemic hormone precursor-related peptides. Peptides, 1991, 12, 673-681.	1.2	28
128	Detection of mRNA encoding Crustacean Hyperglycemic Hormone (CHH) in the eyestalk of the crayfish Orconectes limosus using non-radioactive in situ hybridization. Neuroscience Letters, 1991, 124, 178-182.	1.0	23
129	Cloning and sequence analysis of cDNA encoding two crustacean hyperglycemic hormones from the lobster Homarus americanus. FEBS Journal, 1991, 200, 103-106.	0.2	96
130	Multiple release of peptides by electrically active neurosecretory caudo-dorsal cells of Lymnaea stagnalis. Neuroscience Letters, 1983, 41, 151-155.	1.0	49