Shunji Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945043/publications.pdf Version: 2024-02-01

SHUMU XIE

#	Article	IF	CITATIONS
1	Nickel and indium core-shell co-catalysts loaded silicon nanowire arrays for efficient photoelectrocatalytic reduction of CO2 to formate. Journal of Energy Chemistry, 2021, 54, 422-428.	12.9	38
2	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	30.8	110
3	Inducing Electron Dissipation of Pyridinic N Enabled by Single Ni–N ₄ Sites for the Reduction of Aldehydes/Ketones with Ethanol. ACS Catalysis, 2021, 11, 6398-6405.	11.2	43
4	Photocatalytic Câ^'H activation and Câ^'C coupling of monohydric alcohols. Catalysis Communications, 2021, 153, 106300.	3.3	13
5	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	21.0	106
6	Tribocatalysis: challenges and perspectives. Science China Chemistry, 2021, 64, 1609-1613.	8.2	27
7	Solar energy-driven Câ^'H activation of methanol for direct Câ^'C coupling to ethylene glycol with high stability by nitrogen doped tantalum oxide. Chinese Journal of Catalysis, 2021, 42, 1459-1467.	14.0	20
8	Electrocatalytic reduction of CO ₂ and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50, 12897-12914.	38.1	266
9	Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C–C bonds under simulated solar light. Green Chemistry, 2021, 23, 10071-10078.	9.0	30
10	C–H activations of methanol and ethanol and C–C couplings into diols by zinc–indium–sulfide under visible light. Chemical Communications, 2020, 56, 1776-1779.	4.1	59
11	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	38.1	374
12	Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide. CheM, 2020, 6, 3038-3053.	11.7	112
13	Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nature Catalysis, 2020, 3, 478-487.	34.4	788
14	Zirconia-supported rhenium oxide as an efficient catalyst for the synthesis of biomass-based adipic acid ester. Chemical Communications, 2019, 55, 11017-11020.	4.1	40
15	Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light. ACS Catalysis, 2019, 9, 8443-8451.	11.2	128
16	Visibleâ€Lightâ€Driven Cleavage of Câ^'O Linkage for Lignin Valorization to Functionalized Aromatics. ChemSusChem, 2019, 12, 5023-5031.	6.8	86
17	Photoelectrocatalytic reduction of CO ₂ to syngas over Ag nanoparticle modified p-Si nanowire arrays. Nanoscale, 2019, 11, 12530-12536.	5.6	36
18	Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles. Chemical Communications, 2019, 55, 8013-8016.	4.1	41

Shunji Xie

#	Article	IF	CITATIONS
19	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	12.8	446
20	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	10.0	49
21	Selective electrocatalytic conversion of methane to fuels and chemicals. Journal of Energy Chemistry, 2018, 27, 1629-1636.	12.9	97
22	Visible light-driven Câ^'H activation and C–C coupling of methanol into ethylene glycol. Nature Communications, 2018, 9, 1181.	12.8	188
23	Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nature Catalysis, 2018, 1, 772-780.	34.4	442
24	Photocatalysis: Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure (Small 21/2018). Small, 2018, 14, 1870096.	10.0	3
25	Photocatalytic coupling of formaldehyde to ethylene glycol and glycolaldehyde over bismuth vanadate with controllable facets and cocatalysts. Catalysis Science and Technology, 2017, 7, 923-933.	4.1	30
26	Direct conversion of formaldehyde to ethylene glycol via photocatalytic carbon–carbon coupling over bismuth vanadate. Catalysis Science and Technology, 2016, 6, 6485-6489.	4.1	20
27	Vertically aligned ZnO–Au@CdS core–shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application. Journal of Materials Chemistry A, 2016, 4, 18804-18814.	10.3	122
28	Photocatalytic and photoelectrocatalytic reduction of CO ₂ using heterogeneous catalysts with controlled nanostructures. Chemical Communications, 2016, 52, 35-59.	4.1	508
29	SrNb ₂ O ₆ nanoplates as efficient photocatalysts for the preferential reduction of CO ₂ in the presence of H ₂ O. Chemical Communications, 2015, 51, 3430-3433.	4.1	44
30	MgO- and Pt-Promoted TiO ₂ as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis, 2014, 4, 3644-3653.	11.2	380
31	Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chemical Communications, 2013, 49, 2451.	4.1	220
32	Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Coâ€eatalysts with a Core–Shell Structure. Angewandte Chemie - International Edition, 2013, 52, 5776-5779.	13.8	358