List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494495/publications.pdf Version: 2024-02-01

111	6,676	57758	64796
	citations	44	79
papers	citations	h-index	g-index
113	113	113	4250
all docs	docs citations	times ranked	citing authors

EMANHELE PADINI

#	Article	IF	CITATIONS
1	Nanoparticles Based on Cross-Linked Poly(Lipoic Acid) Protect Macrophages and Cardiomyocytes from Oxidative Stress and Ischemia Reperfusion Injury. Antioxidants, 2022, 11, 907.	5.1	3
2	Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules, 2021, 22, 467-480.	5.4	22
3	Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Frontiers in Immunology, 2020, 11, 567365.	4.8	80
4	Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Advanced Drug Delivery Reviews, 2020, 157, 83-95.	13.7	39
5	Tumor-facing hepatocytes significantly contribute to mild hyperthermia-induced targeting of rat liver metastasis by PLGA-NPs. International Journal of Pharmaceutics, 2019, 566, 541-548.	5.2	7
6	Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging. Frontiers in Chemistry, 2019, 7, 168.	3.6	26
7	C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano, 2018, 12, 5834-5847.	14.6	86
8	Form Matters: Stable Helical Foldamers Preferentially Target Human Monocytes and Granulocytes. ChemMedChem, 2017, 12, 337-345.	3.2	2
9	Combined Action of Human Commensal Bacteria and Amorphous Silica Nanoparticles on the Viability and Immune Responses of Dendritic Cells. Vaccine Journal, 2017, 24, .	3.1	10
10	Formyl-Peptide Receptor Agonists and Amorphous SiO2-NPs Synergistically and Selectively Increase the Inflammatory Responses of Human Monocytes and PMNs. Nanobiomedicine, 2016, 3, 2.	5.7	3
11	Comparison of bactericidal and cytotoxic activities of trichogin analogs. Data in Brief, 2016, 6, 359-367.	1.0	5
12	Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. International Journal of Biochemistry and Cell Biology, 2016, 75, 148-161.	2.8	46
13	The functional dissection of the plasma corona of SiO ₂ -NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Nanoscale, 2015, 7, 17710-17728.	5.6	49
14	The peculiar N- and C-termini of trichogin GA IV are needed for membrane interaction and human cell death induction at doses lacking antibiotic activity. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 134-144.	2.6	19
15	Variations of the corona HDL:albumin ratio determine distinct effects of amorphous SiO ₂ nanoparticles on monocytes and macrophages in serum. Nanomedicine, 2014, 9, 2481-2497.	3.3	23
16	The contribution of stem cell therapy to skeletal muscle remodeling in heart failure. International Journal of Cardiology, 2013, 168, 2014-2021.	1.7	18
17	Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale, 2013, 5, 6106.	5.6	30
18	Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes. Nanomedicine, 2013, 8, 1101-1126.	3.3	18

#	Article	IF	CITATIONS
19	<i>In vitro</i> and <i>in vivo</i> characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine, 2012, 7, 663-677.	3.3	65
20	Water-Soluble Peptide-Coated Nanoparticles: Control of the Helix Structure and Enhanced Differential Binding to Immune Cells. Journal of the American Chemical Society, 2011, 133, 8-11.	13.7	42
21	The Honeybee Antimicrobial Peptide Apidaecin Differentially Immunomodulates Human Macrophages, Monocytes and Dendritic Cells. Journal of Innate Immunity, 2011, 3, 614-622.	3.8	19
22	Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: Role of paracrine and neurohormonal milieu in the remodeling process. Journal of Heart and Lung Transplantation, 2011, 30, 1281-1293.	0.6	46
23	The Soluble Recombinant Neisseria meningitidis Adhesin NadAΔ351–405 Stimulates Human Monocytes by Binding to Extracellular Hsp90. PLoS ONE, 2011, 6, e25089.	2.5	21
24	Mapping of the <i>Neisseria meningitidis</i> NadA Cell-Binding Site: Relevance of Predicted α-Helices in the NH ₂ -Terminal and Dimeric Coiled-Coil Regions. Journal of Bacteriology, 2011, 193, 107-115.	2.2	22
25	Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine, 2011, 6, 1027-1046.	3.3	26
26	Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles. Nanomedicine, 2010, 5, 881-896.	3.3	49
27	Highly PEGylated silica nanoparticles: "ready to use―stealth functional nanocarriers. Journal of Materials Chemistry, 2010, 20, 2780.	6.7	53
28	The membrane expression of <i>Neisseria meningitidis</i> adhesin A (NadA) increases the proimmune effects of <i>MenB</i> OMVs on human macrophages, compared with NadA– OMVs, without further stimulating their proinflammatory activity on circulating monocytes. Journal of Leukocyte Biology, 2009, 86, 143-153.	3.3	45
29	Substitution of the Arginine/Leucine Residues in Apidaecin Ib with Peptoid Residues: Effect on Antimicrobial Activity, Cellular Uptake, and Proteolytic Degradation. Journal of Medicinal Chemistry, 2009, 52, 5197-5206.	6.4	35
30	Human monocytes/macrophages are a target of Neisseria meningitidis Adhesin A (NadA). Journal of Leukocyte Biology, 2008, 83, 1100-1110.	3.3	37
31	IFN-Î ³ and R-848 Dependent Activation of Human Monocyte-Derived Dendritic Cells by <i>Neisseria meningitidis</i> Adhesin A. Journal of Immunology, 2007, 179, 3904-3916.	0.8	25
32	Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogenHelicobacter pylori. FEBS Letters, 2003, 543, 184-189.	2.8	84
33	Helicobacter pylori vacuolating toxin VacA. Cellular and Molecular Mechanisms of Toxin Action, 2003, , 60-75.	0.0	0
34	How the Loop and Middle Regions Influence the Properties of Helicobacter pylori VacA Channels. Biophysical Journal, 2001, 81, 3204-3215.	0.5	15
35	Vacuolation induced by VacA toxin ofHelicobacter pylorirequires the intracellular accumulation of membrane permeant bases, Clâ and water. FEBS Letters, 2001, 508, 479-483.	2.8	30
36	In search of the Helicobacter pylori VacA mechanism of action. Toxicon, 2001, 39, 1757-1767.	1.6	86

#	Article	IF	CITATIONS
37	<i>Helicobacter pylori</i> cytotoxin VacA increases alkaline secretion in gastric epithelial cells. American Journal of Physiology - Renal Physiology, 2001, 281, G1440-G1448.	3.4	27
38	Helicobacter pyloriNeutrophilâ€Activating Protein Stimulates Tissue Factor and Plasminogen Activator Inhibitor–2 Production by Human Blood Mononuclear Cells. Journal of Infectious Diseases, 2001, 183, 1055-1062.	4.0	60
39	Helicobacter pylori Vacuolating Cytotoxin: Cell Intoxication and Anion-Specific Channel Activity. Current Topics in Microbiology and Immunology, 2001, 257, 113-129.	1.1	8
40	The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. Journal of Clinical Investigation, 2001, 108, 929-937.	8.2	78
41	The Catalytic Subunit of Herpes Simplex Virus Type 1 DNA Polymerase Contains a Nuclear Localization Signal in the UL42-Binding Region. Virology, 2000, 273, 139-148.	2.4	23
42	Blockers of VacA Provide Insights into the Structure of the Pore. Biophysical Journal, 2000, 79, 863-873.	0.5	26
43	Intranuclear delivery of an antiviral peptide mediated by the B subunit of Escherichia coli heat-labile enterotoxin. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5221-5226.	7.1	46
44	Towards deciphering the Helicobacter pylori cytotoxin. Molecular Microbiology, 1999, 34, 197-204.	2.5	65
45	Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO Journal, 1999, 18, 5517-5527.	7.8	240
46	Molecular and cellular activities ofHelicobacter pyloripathogenic factors. FEBS Letters, 1999, 452, 16-21.	2.8	50
47	Inhibition of the vacuolating and anion channel activities of the VacA toxin ofHelicobacter pylori. FEBS Letters, 1999, 460, 221-225.	2.8	67
48	Helicobacter pylori Vacuolating Toxin Forms Anion-Selective Channels in Planar Lipid Bilayers: Possible Implications for the Mechanism of Cellular Vacuolation. Biophysical Journal, 1999, 76, 1401-1409.	0.5	145
49	3D imaging of the 58 kda cell binding subunit of the Helicobacter pylori cytotoxin. Journal of Molecular Biology, 1999, 290, 459-470.	4.2	77
50	Helicobacter pylori VacA cytotoxin associated with the bacteria increases epithelial permeability independently of its vacuolating activity. Microbiology (United Kingdom), 1999, 145, 2043-2050.	1.8	68
51	Heparin-Binding Epidermal Growth Factor–Like Growth Factor/Diphtheria Toxin Receptor Expression by Acute Myeloid Leukemia Cells. Blood, 1999, 93, 1715-1723.	1.4	1
52	Characterisation of a monoclonal antibody and its use to purify the cytotoxin ofHelicobacter pylori. FEMS Microbiology Letters, 1998, 165, 79-84.	1.8	16
53	Action site and cellular effects of cytotoxin VacA produced byHelicobacter pylori. Folia Microbiologica, 1998, 43, 279-284.	2.3	14
54	TPA and butyrate increase cell sensitivity to the vacuolating toxin ofHelicobacter pylori. FEBS Letters, 1998, 436, 218-222.	2.8	12

EMANUELE PAPINI

#	Article	IF	CITATIONS
55	Cell vacuolization induced by Helicobacter pylori VacA toxin: cell line sensitivity and quantitative estimation. Toxicology Letters, 1998, 99, 109-115.	0.8	31
56	The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10212-10217.	7.1	184
57	Identification of the <i>Helicobacter pylori</i> VacA Toxin Domain Active in the Cell Cytosol. Infection and Immunity, 1998, 66, 6014-6016.	2.2	102
58	Characterisation of a monoclonal antibody and its use to purify the cytotoxin of Helicobacter pylori. FEMS Microbiology Letters, 1998, 165, 79-84.	1.8	1
59	Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin Journal of Clinical Investigation, 1998, 102, 813-820.	8.2	221
60	Effect of Helicobacter pylori Vacuolating Toxin on Maturation and Extracellular Release of Procathepsin D and on Epidermal Growth Factor Degradation. Journal of Biological Chemistry, 1997, 272, 25022-25028.	3.4	111
61	The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO Journal, 1997, 16, 15-24.	7.8	203
62	Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Molecular Microbiology, 1997, 26, 665-674.	2.5	128
63	The cytotoxic activity of <i>Bacillus anthracis</i> lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors. Biochemical Journal, 1996, 320, 687-691.	3.7	45
64	Bacterial protein toxins and cell vesicle trafficking. Experientia, 1996, 52, 1026-1032.	1.2	17
65	The vacuolar ATPase proton pump is present on intracellular vacuoles induced by Helicobacter pylori. Journal of Medical Microbiology, 1996, 45, 84-89.	1.8	43
66	Lipid Interaction of the 37-kDa and 58-kDa Fragments of the Helicobacter Pylori Cytotoxin. FEBS Journal, 1995, 234, 947-952.	0.2	56
67	Vesicle-associated Membrane Protein (VAMP)/Synaptobrevin-2 Is Associated with Dense Core Secretory Granules in PC12 Neuroendocrine Cells. Journal of Biological Chemistry, 1995, 270, 1332-1336.	3.4	44
68	Low pH Activates the Vacuolating Toxin of Helicobacter pylori, Which Becomes Acid and Pepsin Resistant. Journal of Biological Chemistry, 1995, 270, 23937-23940.	3.4	197
69	Insertion of Diphtheria Toxin in Lipid Bilayers Studied by Spin Label ESR. Biochemistry, 1995, 34, 11561-11567.	2.5	17
70	Cell penetration of bacterial protein toxins. Trends in Microbiology, 1995, 3, 165-167.	7.7	8
71	Helicobacter pylori cytotoxin: importance of native conformation for induction of neutralizing antibodies. Infection and Immunity, 1995, 63, 4476-4480.	2.2	96

72 Translocation of bacterial protein toxins across membranes. , 1995, , 75-93.

#	Article	IF	CITATIONS
73	Effects of herpes simplex virus type 1 infection on the plasma membrane and related functions of HeLa S3 cells. Journal of General Virology, 1994, 75, 3337-3344.	2.9	16
74	Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Letters, 1994, 346, 92-98.	2.8	211
75	Active-Site Mutations of the Diphtheria Toxin Catalytic Domain: Role of Histidine-21 in Nicotinamide Adenine Dinucleotide Binding and ADP-Ribosylation of Elongation Factor 2. Biochemistry, 1994, 33, 5155-5161.	2.5	61
76	Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9720-9724.	7.1	232
77	Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Molecular Microbiology, 1993, 7, 323-327.	2.5	134
78	Cell vacuolization induced byHelicobacter pylori: Inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiology Letters, 1993, 113, 155-159.	1.8	28
79	The sensitivity of cystic fibrosis cells to diphtheria toxin. Toxicon, 1993, 31, 359-362.	1.6	3
80	Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5791-5795.	7.1	1,221
81	Cell vacuolization induced by Helicobacter pylori: Inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiology Letters, 1993, 113, 155-159.	1.8	1
82	Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol Journal of Biological Chemistry, 1993, 268, 1567-1574.	3.4	106
83	Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. Journal of Biological Chemistry, 1993, 268, 1567-74.	3.4	83
84	lon channel and membrane translocation of diphtheria toxin. FEMS Microbiology Letters, 1992, 105, 101-111.	1.8	20
85	lon channel and membrane translocation of diphtheria toxin. FEMS Microbiology Letters, 1992, 105, 101-111.	1.8	1
86	Determination of diphtheria toxin neutralizing antibody titers with a cell protein synthesis inhibition assay. Medical Microbiology and Immunology, 1991, 180, 29-35.	4.8	5
87	Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin. Journal of Biological Chemistry, 1991, 266, 2494-2498.	3.4	29
88	Histidine-21 is involved in diphtheria toxin NAD+ binding. Toxicon, 1990, 28, 631-635.	1.6	21
89	An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infection and Immunity, 1990, 58, 4136-4141.	2.2	114
90	Histidine 21 Is at the NAD+ Binding Site of Diphtheria Toxin. Journal of Biological Chemistry, 1989, 264, 12385-12388.	3.4	57

#	ARTICLE	IF	CITATIONS
91	Membrane Protein Labelling with Photoreactive Phospholipid Analogues. , 1989, , 43-58.		0
92	On the Cellular Mechanism of Action of Diphtheria Toxin. , 1989, , 115-124.		0
93	Histidine 21 is at the NAD+ binding site of diphtheria toxin. Journal of Biological Chemistry, 1989, 264, 12385-8.	3.4	47
94	On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells EMBO Journal, 1988, 7, 3353-3359.	7.8	79
95	On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells. EMBO Journal, 1988, 7, 3353-9.	7.8	22
96	Does tetanus toxin have a sequence homology with the haemagglutinin of influenza virus?. Toxicon, 1987, 25, 911-912.	1.6	3
97	Diphtheria toxin and its mutantcrm197 differ in their interaction with lipids. FEBS Letters, 1987, 215, 73-78.	2.8	33
98	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 1. Liposome aggregation and fusion. FEBS Journal, 1987, 169, 629-635.	0.2	38
99	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. FEBS Journal, 1987, 169, 637-644.	0.2	68
100	Presence of cytochromebâ~'245in NADPH oxidase preparations from human neutrophils. FEBS Letters, 1986, 199, 159-163.	2.8	12
101	Respiratory Response of Phagocytes: Terminal NADPH Oxidase and the Mechanisms of its Activation. Novartis Foundation Symposium, 1986, 118, 172-195.	1.1	8
102	Studies on the Nature and Activation of O2â ^{°,} -forming NADPH Oxidase of Leukocytes. Identification of a Phosphorylated Component of the Active Enzyme. Free Radical Research Communications, 1985, 1, 11-29.	1.8	33
103	Independence with respect to Ca2+ changes of the neutrophil respiratory and secretory response to exogenous phospholipase C and possible involvement of diacylglycerol and protein kinase C. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 844, 81-90.	4.1	35
104	Mechanism of Production of Toxic Oxygen Radicals by Granulocytes and Macrophages and their Function in the Inflammatory Process. Pathology Research and Practice, 1985, 180, 136-142.	2.3	36
105	Cytochrome c oxidase from the slime mold Dictyostelium discoideum: purification and characterization. Biochemistry, 1985, 24, 7845-7852.	2.5	31
106	Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low-potential (â~247 mV) cytochrome b. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 810, 164-173.	1.0	22
107	Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils. FEBS Letters, 1985, 190, 204-208.	2.8	69

108 Characterization of phagocyte NADPH oxidase., 1985, , 423-433.

2

#	Article	IF	CITATIONS
109	NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochromecand dichlorophenolindophenol. FEBS Letters, 1984, 170, 157-161.	2.8	17
110	Composition of partially purified NADPH oxidase from pig neutrophils. Biochemical Journal, 1984, 223, 639-648.	3.7	48
111	Vacuolating Cytotoxin. , 0, , 97-110.		13