
Markus A Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4944935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viscosity and fragility of selected glass-forming chalcogenides. Journal of Non-Crystalline Solids, 2022, 575, 121205.	3.1	5
2	Interpreting light guidance in antiresonant and photonic bandgap waveguides and fibers by light scattering: analytical model and ultra-low guidance. Optics Express, 2022, 30, 2768.	3.4	2
3	Tailored Multiâ€Color Dispersive Wave Formation in Quasiâ€Phaseâ€Matched Exposed Core Fibers. Advanced Science, 2022, 9, e2103864.	11.2	6
4	Attenuation coefficients of selected organic and inorganic solvents in the mid-infrared spectral domain. Optical Materials Express, 2022, 12, 1754.	3.0	12
5	The Optofluidic Light Cage – On-Chip Integrated Spectroscopy Using an Antiresonance Hollow Core Waveguide. Analytical Chemistry, 2021, 93, 752-760.	6.5	16
6	Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4: erratum. Optics Express, 2021, 29, 1890.	3.4	0
7	Exceptionally high coupling of light into optical fibers via all-dielectric nanostructures. , 2021, , .		0
8	Three-dimensional tracking of nanoparticles by dual-color position retrieval in a double-core microstructured optical fiber. Lab on A Chip, 2021, 21, 4437-4444.	6.0	2
9	Longitudinally thickness-controlled nanofilms on exposed core fibres enabling spectrally flattened supercontinuum generation. Light Advanced Manufacturing, 2021, 2, 1.	5.1	2
10	Direct observation of modal hybridization in nanofluidic fiber [Invited]. Optical Materials Express, 2021, 11, 559.	3.0	3
11	Graded Nanofilm Controlled Dispersion and Supercontinuum Generation in Exposed Core Fibers. , $2021,,$		0
12	The Light Cage - Integrated on-Chip Spectroscopy Using a Nano-Printed Hollow Core Waveguide. , 2021, , .		0
13	Hollow-Core Fiber Particle Tracking for Nanoparticle Size Distribution and Mixture Analysis. , 2021, , .		0
14	Understanding Nonlinear Pulse Propagation in Liquid Strand-Based Photonic Bandgap Fibers. Crystals, 2021, 11, 305.	2.2	2
15	Higher-order mode supercontinuum generation in dispersion-engineered liquid-core fibers. Scientific Reports, 2021, 11, 5270.	3.3	18
16	Orders of magnitude loss reduction in photonic bandgap fibers by engineering the core surround. Optics Express, 2021, 29, 8606.	3.4	3
17	What optical fiber modes reveal: group velocity and effective index for external perturbations. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1097.	2.1	3
18	Ultrahigh-aspect-ratio light cages: fabrication limits and tolerances of free-standing 3D nanoprinted waveguides. Optical Materials Express, 2021, 11, 1046.	3.0	9

#	Article	IF	CITATIONS
19	Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light: Science and Applications, 2021, 10, 57.	16.6	84
20	Coherent interaction of atoms with a beam of light confined in a light cage. Light: Science and Applications, 2021, 10, 114.	16.6	16
21	Ultralong Tracking of Fast diffusing Nanoâ€Objects Inside Nanoâ€Fluidic Channel Enhanced Microstructured Optical Fiber. Advanced Photonics Research, 2021, 2, 2100032.	3.6	6
22	Fiber-integrated hollow-core light cage for gas spectroscopy. APL Photonics, 2021, 6, .	5.7	6
23	Localized temperature and pressure measurements inside CS ₂ -filled fiber using stimulated Brillouin scattering. , 2021, , .		1
24	Supercontinuum generation in a carbon disulfide core microstructured optical fiber. Optics Express, 2021, 29, 19891.	3.4	20
25	Scalable Integrated Waveguide with CVD-Grown MoS2 and WS2 Monolayers on Exposed-Core Fibers. , 2021, , .		Ο
26	Ultra-high numerical aperture meta-fiber for flexible optical trapping. , 2021, , .		0
27	Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles. Photonics, 2021, 8, 295.	2.0	3
28	Numerical and Experimental Demonstration of Intermodal Dispersive Wave Generation. Laser and Photonics Reviews, 2021, 15, 2100125.	8.7	8
29	Plasmonic Metalensâ€Enhanced Singleâ€Mode Fibers: A Pathway Toward Remote Light Focusing. Advanced Photonics Research, 2021, 2, 2100100.	3.6	13
30	Tracking of individual Nano-objects inside Hollow Core Fibers on the example SARS-CoV-2. , 2021, , .		0
31	Supercontinuum Generation in Optofluidic Microstructured Optical Fibers. , 2021, , .		Ο
32	Fiber-connected 3D Printed Hollow-core Light Cage for Gas Detection. , 2021, , .		0
33	3D Tracking of Water-Dispersed-Nanosphere in Microstructured Fibers. , 2021, , .		Ο
34	Towards telecom-compatible liquid-core fibers for low-power nonlinear signal processing. , 2021, , .		1
35	Second-Harmonic Generation in Directly-Grown MoS2 Monolayers on Exposed-Core Fibers. , 2021, , .		0
36	Single Crystal Ge Core Fiber Produced via Pressure Assisted Melt Filling and CO2 Laser Crystallization. IEEE Photonics Technology Letters, 2020, 32, 81-84.	2.5	9

#	Article	IF	CITATIONS
37	Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors. Advanced Materials, 2020, 32, e2003826.	21.0	31
38	Nanostructure-Empowered Efficient Coupling of Light into Optical Fibers at Extraordinarily Large Angles. ACS Photonics, 2020, 7, 2834-2841.	6.6	20
39	Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020). Advanced Materials, 2020, 32, 2070354.	21.0	0
40	An improved spectrophotometric method tests the Einstein–Smoluchowski equation: a revisit and update. Physical Chemistry Chemical Physics, 2020, 22, 21784-21792.	2.8	0
41	Resonanceâ€Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers. Laser and Photonics Reviews, 2020, 14, 1900418.	8.7	6
42	Tracking and Analyzing the Brownian Motion of Nano-objects Inside Hollow Core Fibers. ACS Sensors, 2020, 5, 879-886.	7.8	29
43	Three dimensional spatiotemporal nano-scale position retrieval of the confined diffusion of nano-objects inside optofluidic microstructured fibers. Nanoscale, 2020, 12, 3146-3156.	5.6	20
44	Theory of four-wave mixing for bound and leaky modes. Physical Review A, 2020, 101, .	2.5	7
45	Essentials of resonance-enhanced soliton-based supercontinuum generation. Optics Express, 2020, 28, 2557.	3.4	6
46	Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers. Optics Express, 2020, 28, 3097.	3.4	20
47	Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C ₂ Cl ₄ . Optics Express, 2020, 28, 25037.	3.4	6
48	Tailoring soliton fission at telecom wavelengths using composite-liquid-core fibers. Optics Letters, 2020, 45, 2985.	3.3	13
49	Fine-tuning of the optical properties of hollow-core light cages using dielectric nanofilms. Optics Letters, 2020, 45, 196.	3.3	10
50	Three-dimensional spatiotemporal tracking of nano-objects diffusing in water-filled optofluidic microstructured fiber. Nanophotonics, 2020, 9, 4545-4554.	6.0	7
51	Engineering Photon Pair Generation in Microstructured Liquid-Core Fibers. , 2020, , .		0
52	Third-harmonic generation with tailored modes in liquid core fibers with geometric birefringence. Optics Letters, 2020, 45, 6859.	3.3	4
53	Intermodal Dispersive Wave Generation in Silicon Nitride Waveguides. , 2020, , .		0
54	Crossing the exceptional point in a fiber-plasmonic waveguide -INVITED. EPJ Web of Conferences, 2020, 238, 08002.	0.3	0

#	Article	IF	CITATIONS
55	Photoluminescence and Third Harmonic Generation in Directly-Grown MoS2 and WS2 Exposed-Core Fibers. , 2020, , .		Ο
56	Crossing the exceptional point in a hybrid plasmonic fiber. , 2020, , .		0
57	Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors. Scientific Reports, 2019, 9, 9600.	3.3	13
58	Convectionless directional solidification in an extremely confined sample geometry. Materialia, 2019, 8, 100457.	2.7	1
59	Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 Filled Liquid Core Fiber. , 2019, , .		Ο
60	The Light Cage $\hat{a} \in$ " An on-Chip Hollow-Core Waveguide Implemented by 3D Nanoprinting. , 2019, , .		0
61	Three Dimensional Particle Tracking in Microstructured Graded Index Fiber. , 2019, , .		Ο
62	Fluoride-Sulfophosphate/Silica Hybrid Fiber as a Platform for Optically Active Materials. Frontiers in Materials, 2019, 6, .	2.4	6
63	All-Fiber Integrated In-Line Semiconductor Photoconductor. Journal of Lightwave Technology, 2019, 37, 3244-3251.	4.6	4
64	Analysis of viscosity data in As2Se3, Se and Se95Te5 chalcogenide melts using the pressure assisted melt filling technique. Journal of Non-Crystalline Solids, 2019, 511, 100-108.	3.1	6
65	Boosting Light Collection Efficiency of Optical Fibers Using Metallic Nanostructures. ACS Photonics, 2019, 6, 691-698.	6.6	23
66	Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers. Scientific Reports, 2019, 9, 2873.	3.3	11
67	Tailorable Supercontinuumc Generation in Liquid-Composite-Core Fibers. , 2019, , .		Ο
68	Higher-Order Mode Temperature-Tunable Supercontinuum Generation in Liquid-Core Optical Fibers. , 2019, , .		0
69	Detection and Tracking of Multiple Individual Nanoparticles in Antiresonant Hollow-Core Fibers. , 2019, , .		Ο
70	Tuning the Effective <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi </mml:mrow></mml:math> Phase of Plasmonic Eigenmodes. Physical Review Letters, 2019, 123, 213903.	7.8	31
71	Hollow Core Light Cage: Trapping Light Behind Bars. ACS Photonics, 2019, 6, 649-658.	6.6	31
72	Nanoapertures without Nanolithography. ACS Photonics, 2019, 6, 30-37.	6.6	1

#	Article	IF	CITATIONS
73	Approximate model for analyzing band structures of single-ring hollow-core anti-resonant fibers. Optics Express, 2019, 27, 10009.	3.4	15
74	Impact of deuteration on the ultrafast nonlinear optical response of toluene and nitrobenzene. Optics Express, 2019, 27, 29491.	3.4	5
75	Nanobore fiber focus trap with enhanced tuning capabilities. Optics Express, 2019, 27, 36221.	3.4	5
76	Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber. Optics Letters, 2019, 44, 626.	3.3	9
77	Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers. Optics Letters, 2019, 44, 2236.	3.3	17
78	Light guidance in photonic band gap guiding dual-ring light cages implemented by direct laser writing. Optics Letters, 2019, 44, 4016.	3.3	17
79	Nano-bore fiber focus trap with enhanced performance. , 2019, , .		Ο
80	A New Theoretical Formulation for the Nonlinear Pulse Propagation in Waveguide Geometries. , 2019, , .		0
81	The hollow core light cage: diffractionless propagation of light in "quasi-air" inside a 3D nano-printed on-chip hollow core device (Conference Presentation). , 2019, , .		0
82	OH diffusion effects at preparation of antiresonant hollow core fibers. , 2019, , .		0
83	Optofluidic microstructured fibers: detecting freely diffusing nanoobjects via dynamic light scattering (Conference Presentation). , 2019, , .		0
84	Optofluidic microstructured fibers: a platform to detect freely diffusing nano-objects. , 2019, , .		1
85	Impact of intra- and inter-unit cell symmetry breaking on the optical response of the arrays of nanotrimers. Optics Letters, 2019, 44, 5169.	3.3	0
86	Effectively Single-Mode Self-Recovering Ultrafast Nonlinear Nanowire Surface Plasmons. Physical Review Applied, 2018, 9, .	3.8	5
87	Analytic Mode Normalization for the Kerr Nonlinearity Parameter: Prediction of Nonlinear Gain for Leaky Modes. Physical Review Letters, 2018, 121, 213905.	7.8	11
88	Electric current-driven spectral tunability of surface plasmon polaritons in gold coated tapered fibers. AIP Advances, 2018, 8, 095113.	1.3	1
89	Understanding Dispersion of Revolver-Type Anti-Resonant Hollow Core Fibers. Fibers, 2018, 6, 68.	4.0	10
90	Fiber-Integrated Absorption Spectroscopy Using Liquid-Filled Nanobore Optical Fibers. Journal of Lightwave Technology, 2018, 36, 3970-3975.	4.6	8

#	Article	IF	CITATIONS
91	Carbon chloride-core fibers for soliton mediated supercontinuum generation. Optics Express, 2018, 26, 3221.	3.4	53
92	Thermodynamic control of soliton dynamics in liquid-core fibers. Optica, 2018, 5, 695.	9.3	46
93	Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics, 2018, 7, 1279-1298.	6.0	32
94	UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection. Sensors, 2018, 18, 478.	3.8	53
95	Nanotrimer enhanced optical fiber tips implemented by electron beam lithography. Optical Materials Express, 2018, 8, 2246.	3.0	29
96	Analytical mode normalization and resonant state expansion for bound and leaky modes in optical fibers - an efficient tool to model transverse disorder. Optics Express, 2018, 26, 22536.	3.4	13
97	Measurement of the Dispersion of an Antiresonant Hollow Core Fiber. IEEE Photonics Journal, 2018, 10, 1-6.	2.0	4
98	Bending losses and modal properties of nano-bore optical fibers. Optics Letters, 2018, 43, 4192.	3.3	7
99	Polarization evolution in single-ring antiresonant hollow-core fibers. Applied Optics, 2018, 57, 8529.	1.8	4
100	Photonic candle – focusing light using nano-bore optical fibers. Optics Express, 2018, 26, 31706.	3.4	4
101	Resonant State Expansion in Fiber Geometries. , 2018, , .		0
102	Fibers with Liquid Cores: A New Way to Control Supercontinuum Generation and Soliton Dynamics. , 2018, , .		0
103	Optofluidic microstructured fibers: a novel base for new nonlinear photonics and single nano-objects detection (Conference Presentation). , 2018, , .		0
104	Nanoboomerang-based inverse metasurfaces—A promising path towards ultrathin photonic devices for transmission operation. APL Photonics, 2017, 2, 036102.	5.7	7
105	Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber. Nano Letters, 2017, 17, 631-637.	9.1	34
106	Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers. Scientific Reports, 2017, 7, 11761.	3.3	79
107	Giant Faraday Rotation through Ultrasmall Fe ⁰ <i>_n</i> Clusters in Superparamagnetic FeOâ€6iO ₂ Vitreous Films. Advanced Science, 2017, 4, 1600299.	11.2	5
108	Permanent structural anisotropy in a hybrid fiber optical waveguide. Applied Physics Letters, 2017, 111, .	3.3	8

#	Article	IF	CITATIONS
109	Nanowire-based hybrid optical fibers: A platform for nonlinear light generation and plasmonics. , 2017, , .		0
110	Hybrid soliton dynamics in liquid-core fibres. Nature Communications, 2017, 8, 42.	12.8	99
111	Saphir-Faser-Bragg-Gitter für die Hochtemperatursensorik. TM Technisches Messen, 2017, 84, 797-803.	0.7	Ο
112	Dispersion-designed antiresonant hollow-core fibers for supercontinuum generation by soliton explosion. , 2017, , .		0
113	Dispersion measurement of engineered antiresonant hollow-core fibers with spectral interferometry. , 2017, , .		0
114	Wavelength shifted third harmonic generation in an exposed-core microstructured optical fiber. , 2017, , .		1
115	Understanding antiresonant guidance on the basis of planar interface reflection. , 2017, , .		0
116	Nanofilm-induced spectral tuning of third harmonic generation. Optics Letters, 2017, 42, 1812.	3.3	10
117	Plasmonic nanoparticle-functionalized exposed-core fiber—an optofluidic refractive index sensing platform. Optics Letters, 2017, 42, 4395.	3.3	22
118	Nanoparticle functionalised small-core suspended-core fibre – a novel platform for efficient sensing. Biomedical Optics Express, 2017, 8, 790.	2.9	31
119	Guiding light in a water core all-solid cladding photonic band gap fiber – an innovative platform for fiber-based optofluidics. Optics Express, 2017, 25, 22467.	3.4	10
120	Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids. Optics Express, 2017, 25, 22932.	3.4	20
121	Low-loss deuterated organic solvents for visible and near-infrared photonics. Optical Materials Express, 2017, 7, 1122.	3.0	13
122	Analysis of nanogap-induced spectral blue-shifts of plasmons on fiber-integrated gold, silver and copper nanowires. Optical Materials Express, 2017, 7, 1486.	3.0	9
123	Excitation of short-range surface-plasmon polaritons in a gold nanowire enhanced step-index fiber. , 2017, , .		0
124	Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light: Science and Applications, 2017, 6, e17124-e17124.	16.6	74
125	Temperature-based wavelength tuning of non-solitonic radiation in liquid-core fibers. , 2017, , .		0
126	Nanowire-based hybrid optical fibers: a platform for nonlinear light generation, nanoscale plasmonics and single nanoobject detection. , 2017, , .		0

#	Article	IF	CITATIONS
127	Multi-octave supercontinuum driven by soliton explosion in dispersion-designed antiresonant hollow-core fibers. , 2017, , .		1
128	Performance limits of single nano-object detection with optical fiber tapers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1833.	2.1	1
129	Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers. Optics Express, 2016, 24, 16191.	3.4	17
130	Identification of zero density of states domains in band gap fibers using a single binary function. Optics Express, 2016, 24, 16212.	3.4	2
131	Enhanced sensitivity in single-mode silicon nitride stadium resonators at visible wavelengths. Optics Letters, 2016, 41, 5377.	3.3	7
132	Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle. Faraday Discussions, 2016, 193, 447-458.	3.2	11
133	Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference) Tj ETQq1 1 0.784314	l rgBT /Ον	erlock 10 Tf
134	Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing. APL Photonics, 2016, 1, 066102.	5.7	21
135	Tailored loss discrimination in indefinite metamaterial-clad hollow-core fibers. Optics Express, 2016, 24, 15702.	3.4	6
136	Hybrid Optical Fibers – An Innovative Platform for Inâ€Fiber Photonic Devices. Advanced Optical Materials, 2016, 4, 13-36.	7.3	153
137	Third harmonic generation in exposed-core microstructured optical fibers. Optics Express, 2016, 24, 17860.	3.4	16
138	Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers. Optics Express, 2016, 24, 20515.	3.4	11
139	Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips. Optics Express, 2016, 24, 7507.	3.4	23
140	Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers. Optics Letters, 2016, 41, 3519.	3.3	7
141	High-Temperature Strain Sensing Using Sapphire Fibers With Inscribed First-Order Bragg Gratings. IEEE Photonics Journal, 2016, 8, 1-8.	2.0	19
142	Micron-sized gold-nickel alloy wire integrated silica optical fibers. Optical Materials Express, 2016, 6, 1790.	3.0	10
143	Silver metaphosphate glass wires inside silica fibers—a new approach for hybrid optical fibers. Optics Express, 2016, 24, 3258.	3.4	22
144	Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber. Optics Letters, 2016, 41, 448.	3.3	20

#	Article	IF	CITATIONS
145	1.2.4 - First-order sapphire fiber Bragg gratings for high temperature sensing. , 2016, , .		1
146	Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber. , 2016, , .		0
147	Deep Subwavelength and Broadband Light Delivery using an All-Fiber Plasmonic Nanotip-Enhanced Near-Field Probe. , 2016, , .		0
148	Octave Broadband Supercontinuum Generation in Gas-Filled Anti-Resonant Hollow-Core Fiber. , 2016, ,		0
149	Identification of zero density of states domains in band gap fibers using a single binary function. Optics Express, 2016, 24, 16211.	3.4	0
150	Ultrathin niobium nanofilms on fiber optical tapers – a new route towards low-loss hybrid plasmonic modes. Scientific Reports, 2015, 5, 17060.	3.3	65
151	Soliton-based MIR generation until 2.4 $\hat{A}\mu m$ in a CS2-core step-index fiber. , 2015, , .		1
152	Plasmonic microstructured optical fibers. , 2015, , .		0
153	An ion trap built with photonic crystal fibre technology. Review of Scientific Instruments, 2015, 86, 033107.	1.3	7
154	Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports. Analytica Chimica Acta, 2015, 875, 1-6.	5.4	9
155	Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics. Scientific Reports, 2015, 5, 8942.	3.3	71
156	Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet. Optics Express, 2015, 23, 2557.	3.4	13
157	Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 2015, 91, 860-865.	6.0	88
158	Low-loss single-mode guidance in large-core antiresonant hollow-core fibers. Optics Letters, 2015, 40, 3432.	3.3	59
159	Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires. Optics Express, 2015, 23, 12174.	3.4	34
160	Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry. Applied Physics Letters, 2015, 106, .	3.3	15
161	Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber. ACS Nano, 2015, 9, 12349-12357.	14.6	112
162	Liquid and Metallic Nanowires in Fibers: A Novel Base for Nanophotonics and Optofluidics. , 2015, , .		0

Liquid and Metallic Nanowires in Fibers: A Novel Base for Nanophotonics and Optofluidics. , 2015, , . 162

#	Article	IF	CITATIONS
163	Long-term stable sapphire fiber Bragg grating sensors at 1400ŰC. , 2014, , .		6
164	Supercontinuum Generation in As2S3-Silica Double-Nanospike Waveguide. , 2014, , .		0
165	A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers. Optics Express, 2014, 22, 11741.	3.4	10
166	Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes. Optics Express, 2014, 22, 19131.	3.4	61
167	Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator. Optics Express, 2014, 22, 25333.	3.4	50
168	Extinction properties of ultrapure water down to deep ultraviolet wavelengths. Optical Materials Express, 2014, 4, 1932.	3.0	17
169	In Situ Heterogeneous Catalysis Monitoring in a Hollowâ€Core Photonic Crystal Fiber Microflow Reactor. Advanced Materials Interfaces, 2014, 1, 1300093.	3.7	12
170	Hybrid fibers: a base for creating new sensing fibers. Proceedings of SPIE, 2014, , .	0.8	0
171	Fluorescence detection for phosphate monitoring using reverse injection analysis. Talanta, 2014, 125, 107-113.	5.5	44
172	Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation. Optics Letters, 2014, 39, 2056.	3.3	57
173	Nanowires inside optical fibers — A new base for nanophotonics. , 2014, , .		0
174	As_2S_3–silica double-nanospike waveguide for mid-infrared supercontinuum generation. Optics Letters, 2014, 39, 5216.	3.3	48
175	A gold-nanotip optical fiber for plasmon-enhanced near-field detection. Applied Physics Letters, 2013, 103, 021101.	3.3	37
176	Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New Journal of Physics, 2013, 15, 013033.	2.9	99
177	Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nature Communications, 2013, 4, 2047.	12.8	155
178	Optical sapphire fiber Bragg gratings as high temperature sensors. , 2013, , .		9
179	Mid infrared supercontinuum generation in nanotapered chalcogenide-silica step-index waveguides. , 2013, , .		0
180	Mid-infrared supercontinuum generation in As_2S_3-silica "nano-spike―step-index waveguide. Optics Express, 2013, 21, 10969.	3.4	97

#	Article	IF	CITATIONS
181	Mid-IR Frequency Combs From Coherent Supercontinuum Generation in Chalcogenide Nano-Spike Waveguides. , 2013, , .		0
182	Magnetic and magneto-optical quenching in (Mn^2+, Sr^2+) metaphosphate glasses. Optical Materials Express, 2013, 3, 184.	3.0	38
183	Chalcogenide-silica fibers: A new base for linear and nonlinear nanophotonic devices. , 2013, , .		1
184	A gold nanotip enhanced optical fibre device for plasmonic near-field microscopy. , 2013, , .		0
185	Hybrid fibers: an innovative base for plasmonics and nonlinear optics. , 2013, , .		0
186	Chalcogenide-silica fibers $\hat{a} {\in} ``$ a novel base for nanophotonic devices. , 2013, , .		0
187	Fiber plasmonics on the basis of metallic nanowires. , 2013, , .		Ο
188	Polarisation-resolved near-field mapping of a coupled gold nanowire array. Optics Express, 2012, 20, 28409.	3.4	35
189	Excitation of a nanowire "molecule―in gold-filled photonic crystal fiber. Optics Letters, 2012, 37, 2946.	3.3	52
190	Hybrid fibers: multimaterial nanophotonic devices in fiber form. , 2012, , .		0
191	Nanophotonics inside hybrid optical fibers. , 2012, , .		0
192	Direct SNOM of quadrupolar plasmon mode selectively excited on gold nanowire in PCF. , 2012, , .		0
193	Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nature Communications, 2012, 3, 1108.	12.8	215
194	Fibres embrace optoelectronics. Nature Photonics, 2012, 6, 143-145.	31.4	0
195	Stabilised Biosensing Using Needleâ€Based Recess Electrodes. Electroanalysis, 2012, 24, 529-538.	2.9	9
196	Recent developments in hybrid photonic crystal fiber. , 2011, , .		0
197	An azimuthally polarizing photonic crystal fibre with a central gold nanowire. New Journal of Physics, 2011, 13, 063016.	2.9	33
198	Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 193.	2.1	34

#	Article	IF	CITATIONS
199	Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. Optics Express, 2011, 19, 8200.	3.4	74
200	Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express, 2011, 19, 12180.	3.4	177
201	Supercontinuum generation in chalcogenide-silica step-index fibers. Optics Express, 2011, 19, 21003.	3.4	126
202	Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers. Optics Letters, 2011, 36, 2432.	3.3	96
203	Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices. Journal of Non-Crystalline Solids, 2011, 357, 1558-1563.	3.1	26
204	Complex Faraday Rotation in Microstructured Magnetoâ€optical Fiber Waveguides. Advanced Materials, 2011, 23, 2681-2688.	21.0	70
205	Selective excitation of guided surface plasmons on uniform and conicallytapered Au nanowires. , 2011, , , \cdot		0
206	Plasmonic Photonic Crystal Fiber. , 2011, , .		0
207	Linearons: Solitons propagating in liquid-core photonic crystal fibers. , 2011, , .		0
208	Bio-sensing using recessed gold-filled capillary amperometric electrodes. Analytical and Bioanalytical Chemistry, 2010, 398, 1687-1694.	3.7	13
209	Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers. Physical Review Letters, 2010, 105, 263902.	7.8	73
210	Plasmon resonances on gold nanowires directly drawn in step-index fiber. , 2010, , .		1
211	Emergence of Geometrical Optical Nonlinearities in Photonic Crystal Fiber Nanowires. Physical Review Letters, 2010, 105, 093904.	7.8	31
212	Broadband NIR photoluminescence from Bi-doped Ba_2P_2O_7 crystals: Insights into the nature of NIR-emitting Bismuth centers. Optics Express, 2010, 18, 12852.	3.4	103
213	Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Optics Letters, 2010, 35, 2573.	3.3	101
214	High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices. Journal of Non-Crystalline Solids, 2010, 356, 1829-1836.	3.1	43
215	From plasmonics to supercontinuum generation: Subwavelength scale devices based on hybrid photonic crystal fibers. , 2010, , .		0
216	All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Optics Letters, 2009, 34, 1946.	3.3	80

#	Article	IF	CITATIONS
217	Novel nanophotonic waveguides based on metal, semiconductor or soft glass modified photonic crystal fibres. , 2009, , .		1
218	Optical properties of chalcogenide-filled silica-air PCF. , 2009, , .		1
219	Long-range spiralling surface plasmon modes on metallic nanowires. Optics Express, 2008, 16, 13617.	3.4	106
220	Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Optics Express, 2008, 16, 17227.	3.4	122
221	Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Physical Review B, 2008, 77, .	3.2	207
222	Metal nanowire arrays in photonic crystal fibers. , 2008, , .		1
223	Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Applied Physics Letters, 2008, 93, .	3.3	185
224	Polarization properties of PCF with Ge-nanowire. , 2008, , .		1
225	Transmission properties of selectively gold-filled polarization-maintaining PCF. , 2008, , .		1
226	Omnidirectional photonic band gap in polymer photonic crystal slabs. Applied Physics Letters, 2007, 91, 221104.	3.3	9
227	Numerical study of guided modes in arrays of metallic nanowires. Optics Letters, 2007, 32, 1647.	3.3	45
228	Polymer based tuneable photonic crystals. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3739-3753.	1.8	8
229	Metal Nanowire Arrays in Photonic Crystal Fibres. , 2007, , .		Ο
230	Photonic Crystal Optical Circuits in Moderate Index Materials. , 2006, , 289-307.		1
231	Modulation and dispersion control in photonic crystals. , 2006, 6331, 72.		0
232	Fabrication of photonic crystal structures in polymer waveguide material. Microelectronic Engineering, 2006, 83, 1138-1141.	2.4	15
233	Low-n mesoporous silica films: structure and properties. Applied Physics A: Materials Science and Processing, 2005, 81, 425-432.	2.3	20
234	Photonic crystal all-polymer slab resonators. Journal of Applied Physics, 2005, 98, 103101.	2.5	10

#	Article	IF	CITATIONS
235	Electro-optically tunable photonic crystals. Applied Physics Letters, 2005, 87, 121110.	3.3	34
236	Spectral Trimming of Photonic Crystals. Lecture Notes in Physics, 2005, , 71-86.	0.7	3
237	UV-TRIMMING OF TWO-DIMENSIONAL PHOTONIC CRYSTAL STRUCTURES. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 535-540.	1.8	4
238	Ultralow refractive index substrates–a base for photonic crystal slab waveguides. Applied Physics Letters, 2004, 85, 16-18.	3.3	71
239	Transmission properties and spectral trimming of polymer photonic crystals. , 2004, , .		1
240	Etching of sub-micron high aspect ratio holes in oxides and polymers. Microelectronic Engineering, 2004, 73-74, 330-335.	2.4	6
241	Tunable polymer photonic crystals. , 2003, 5212, 171.		Ο
242	Improved transmission characteristics of moderate refractive index contrast photonic crystal slabs. Applied Physics Letters, 2002, 81, 2517-2519.	3.3	28
243	Generation of 455 nm radiation by intracavity doubling of a Nd:LiLuF/sub 4/ laser. , 2001, , .		Ο
244	Continuous wave diode pumped Nd:GdVO4 laser at 912nm and intracavity doubling to the blue spectral range. , 2001, , WA2.		7
245	Externally tunable fibers for tailored nonlinear light sources. SPIE Newsroom, 0, , .	0.1	0
246	Influence of non-Hermitian mode topology on refractive index sensing with plasmonic waveguides. Photonics Research, 0, , .	7.0	4