Stephen A Westcott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4944736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Baseâ€Mediated Radical Borylation of Alkyl Sulfones. Chemistry - A European Journal, 2022, 28, .	3.3	14
2	Cu-mediated <i>vs.</i> Cu-free selective borylation of aryl alkyl sulfones. Chemical Communications, 2022, 58, 395-398.	4.1	11
3	Selective, Transition Metalâ€free 1,2â€Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry - A European Journal, 2022, 28, .	3.3	9
4	Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 2224-2255.	4.3	39
5	Boron-containing capsaicinoids. RSC Advances, 2021, 11, 24282-24291.	3.6	2
6	Boron Oxide Nanoparticles Exhibit Minor, Species-Specific Acute Toxicity to North-Temperate and Amazonian Freshwater Fishes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 689933.	4.1	0
7	Ni atalyzed Borylation of Aryl Sulfoxides. Chemistry - A European Journal, 2021, 27, 8149-8158.	3.3	17
8	Transition Metal Catalystâ€Free, Baseâ€Promoted 1,2â€Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angewandte Chemie, 2021, 133, 16665-16674.	2.0	2
9	Transition Metal Catalystâ€Free, Baseâ€Promoted 1,2â€Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angewandte Chemie - International Edition, 2021, 60, 16529-16538.	13.8	9
10	The hydroboration of $\hat{l}\pm$ -diimines. New Journal of Chemistry, 2021, 45, 14908-14912.	2.8	2
11	Boron and beyond: celebrating Todd B. Marder's contributions to chemistry. New Journal of Chemistry, 2021, 45, 14844-14846.	2.8	0
12	First-Row d-Block Element-Catalyzed Carbon–Boron Bond Formation and Related Processes. Chemical Reviews, 2021, 121, 13238-13341.	47.7	163
13	Copperâ€Catalyzed Oxidative Crossâ€Coupling of Electronâ€Deficient Polyfluorophenylboronate Esters with Terminal Alkynes. Chemistry - A European Journal, 2020, 26, 17267-17274.	3.3	15
14	Organocatalytic trans Phosphinoboration of Internal Alkynes. Angewandte Chemie, 2020, 132, 14464-14468.	2.0	3
15	Organocatalytic <i>trans</i> Phosphinoboration of Internal Alkynes. Angewandte Chemie - International Edition, 2020, 59, 14358-14362.	13.8	25
16	The phosphinoboration of acyl chlorides. Dalton Transactions, 2020, 49, 5092-5099.	3.3	16
17	Ni-Catalyzed Traceless, Directed C3-Selective C–H Borylation of Indoles. Journal of the American Chemical Society, 2020, 142, 13136-13144.	13.7	60
18	Phosphinoboration of Diazobenzene: Intramolecular FLP Synthon for PN ₂ Bâ€Derived Heterocycles. Chemistry - A European Journal, 2019, 25, 12521-12525.	3.3	25

#	Article	IF	CITATIONS
19	Catalytic cross-dimerisation giving reactive borylated polyenes toward cross-coupling. Chemical Communications, 2019, 55, 10527-10530.	4.1	11
20	Double Phosphinoboration of CO 2 : A Facile Route to Diphosphaâ€Ureas. Chemistry - A European Journal, 2019, 25, 12063-12067.	3.3	15
21	1,1-Phosphinoboration of diazomethanes. Chemical Communications, 2019, 55, 12100-12103.	4.1	13
22	Cyclisations of alkynoic acids using copper(I) arylspiroborate complexes. Tetrahedron, 2019, 75, 2106-2112.	1.9	3
23	The phosphinoboration of 2-diphenylphosphino benzaldehyde and related aldimines. Journal of Organometallic Chemistry, 2019, 880, 378-385.	1.8	11
24	Copper-boryl mediated organic synthesis. Chemical Society Reviews, 2018, 47, 7477-7494.	38.1	243
25	Preliminary investigations into the synthesis and antimicrobial activities of boron-containing capsaicinoids. Canadian Journal of Chemistry, 2018, 96, 1065-1070.	1.1	9
26	Understanding the mechanism of transition metal-free <i>anti</i> addition to alkynes: the selenoboration case. Catalysis Science and Technology, 2018, 8, 3617-3628.	4.1	13
27	Synthesis, reactivity, and antimicrobial properties of boron-containing 4-ethyl-3-thiosemicarbazide derivatives. Canadian Journal of Chemistry, 2018, 96, 906-911.	1.1	13
28	Synthesis, characterization, and anticancer properties of iminophosphineplatinum(II) complexes containing boronate esters. Canadian Journal of Chemistry, 2017, 95, 207-213.	1.1	7
29	Rhenium-catalysed hydroboration of aldehydes and aldimines. Dalton Transactions, 2017, 46, 7750-7757.	3.3	53
30	Synthesis, characterization, and antimicrobial activities of palladium Schiff base complexes derived from aminosalicylic acids. Transition Metal Chemistry, 2017, 42, 263-271.	1.4	8
31	Synthesis and characterization of iminophosphineplatinum(II) complexes of the type (κ2-P,N-2-Ph2PC6H4C(H)=NC6H4X)PtCl2 (XÂ=ÂOMe, F). Transition Metal Chemistry, 2017, 42, 693-701.	1.4	2
32	The phosphinoboration of carbodiimides, isocyanates, isothiocyanates and CO2. Dalton Transactions, 2017, 46, 10876-10885.	3.3	19
33	The Phosphinoboration of <i>N</i> â€Heterocycles. Chemistry - A European Journal, 2017, 23, 14485-14499.	3.3	35
34	Synthesis and antimicrobial properties of cyclic fluorodiamines containing boronate esters. Heteroatom Chemistry, 2017, 28, .	0.7	7
35	Current Developments in the Catalyzed Hydroboration Reaction. ACS Symposium Series, 2016, , 209-225.	0.5	39
36	Synthesis and Molecular Structure of Ph ₃ GeBO ₂ C ₂ Me ₄ . X-ray Structure Analysis Online, 2016, 32, 35-36.	0.2	2

#	Article	IF	CITATIONS
37	Strategic Trimethylsilyldiazomethane Insertion into pinB–SR Followed by Selective Alkylations. Organic Letters, 2016, 18, 3830-3833.	4.6	19
38	Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chemical Reviews, 2016, 116, 9091-9161.	47.7	835
39	Synthesis, Characterization, and Anticancer Activities of Pyrogallolâ€Based Arylspiroborates. Journal of Heterocyclic Chemistry, 2016, 53, 1807-1812.	2.6	9
40	Synthesis, characterization, and anticancer activities of lipophilic pyridinecarboxaldimine platinum(II) complexes. Polyhedron, 2016, 108, 23-29.	2.2	14
41	Ynones Merge Activation/Conjugate Addition of Chalcogenoborates ArEâ€Bpin (E=Se, S). Advanced Synthesis and Catalysis, 2015, 357, 3098-3103.	4.3	21
42	Synthesis and Reactivity of Novel Boranes Derived from Bulky Salicylaldimines: The Molecular Structure of a Maltolato Compound. Crystals, 2015, 5, 91-99.	2.2	1
43	Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester. International Journal of Medicinal Chemistry, 2015, 2015, 1-9.	2.2	5
44	Synthesis, characterization, and anticancer properties of organometallic Schiff base platinum complexes. Canadian Journal of Chemistry, 2015, 93, 1140-1146.	1.1	10
45	Singular Metal Activation of Diboron Compounds. Advances in Organometallic Chemistry, 2015, 63, 39-89.	1.0	16
46	The Phosphinoboration Reaction. Angewandte Chemie - International Edition, 2015, 54, 2121-2125.	13.8	61
47	Thioboration of α,β-Unsaturated Ketones and Aldehydes toward the Synthesis of β-Sulfido Carbonyl Compounds. Journal of Organic Chemistry, 2015, 80, 2148-2154.	3.2	25
48	Synthesis, Characterisation, and Antifungal Activities of Novel Benzodiazaborines. Australian Journal of Chemistry, 2015, 68, 366.	0.9	19
49	Anti-mycobacterial activities of copper(II) complexes. Part II. Lipophilic hydroxypyridinones derived from maltol. Canadian Journal of Chemistry, 2015, 93, 334-340.	1.1	8
50	Synthesis and antimicrobial properties of lipophilic Schiff base copper and palladium complexes. Transition Metal Chemistry, 2015, 40, 605-612.	1.4	1
51	Dehydrogenative borylation: the dark horse in metal-catalyzed hydroborations and diborations?. Reviews in Inorganic Chemistry, 2015, 35, 69-79.	4.1	26
52	Antimicrobial and antimycobacterial activities of aliphatic amines derived from vanillin. Canadian Journal of Chemistry, 2015, 93, 1305-1311.	1.1	11
53	Synthesis, characterization and antimicrobial properties of lipophilic palladium complexes bearing iminopyridine ligands. Transition Metal Chemistry, 2015, 40, 813-819.	1.4	2
54	Arylspiroborates Derived from 4â€ <i>tert</i> â€Butylcatechol and 3,5â€Diâ€ <i>tert</i> â€butylcatechol and Their Antimicrobial Activities. Journal of Heterocyclic Chemistry, 2014, 51, 157-161.	2.6	8

#	Article	IF	CITATIONS
55	Heterocyclic Aminoboron Compounds as Antituberculosis Agents. Heteroatom Chemistry, 2014, 25, 100-106.	0.7	17
56	Face to face activation of a phenylselenium borane with α,β-unsaturated carbonyl substrates: facile synthesis of C–Se bonds. Chemical Communications, 2014, 50, 8420.	4.1	26
57	Palladium-Catalyzed Suzuki–Miyaura Cross-Couplings with 2-Diethylphosphonato-Substituted Aryl- and Naphthylboronate Esters as the Nucleophilic Partner: A Complementary Approach to the Synthesis of Biaryl Monophosphonates. Organometallics, 2014, 33, 5209-5219.	2.3	10
58	Synthesis, characterization and anticancer properties of (salicylaldiminato)platinum(II) complexes. Inorganica Chimica Acta, 2014, 415, 88-94.	2.4	16
59	Metal-free borylative ring-opening of vinyl epoxides and aziridines. Organic and Biomolecular Chemistry, 2013, 11, 7004.	2.8	44
60	Rhodium complexes containing arylspiroborates derived from 3,5-di-tert-butylcatechol and their use in catalyzed hydroborations. Polyhedron, 2013, 52, 1181-1189.	2.2	9
61	Addition of boranes to iminophosphines: Synthesis and reactivity of a new bulky hydroboration reagent. Journal of Organometallic Chemistry, 2013, 731, 1-9.	1.8	4
62	Synthesis and Biological Activities of Arylspiroborates Derived from 2,3â€Dihydroxynaphthalene. Heteroatom Chemistry, 2013, 24, 116-123.	0.7	11
63	Pyridinones Are Not Antioxidants As Shown by Kinetics of Free Radical Autoxidation, but They Prevent Radical Oxidations Catalyzed by Toxic Heavy Metals. Chemical Research in Toxicology, 2013, 26, 399-409.	3.3	5
64	Hot peppers for a healthier future: boron-containing capsaicinoids. Future Medicinal Chemistry, 2013, 5, 613-615.	2.3	1
65	Anti-mycobacterial activities of copper(II) salicylaldimine complexes derived from long-chain aliphatic amines. Canadian Journal of Chemistry, 2013, 91, 1093-1097.	1.1	3
66	Synthesis, characterization, and bioactivities of platinum(II) complexes bearing pyridinecarboxaldimines containing aliphatic groups. Canadian Journal of Chemistry, 2013, 91, 131-136.	1.1	6
67	The Synthesis and Molecular Structure of 1-(3,4-Dihydroxyphenethyl)-3-hydroxy-2-methylpyridin-4(1H)-one Hydrochloride Methanol Solvate. Crystals, 2013, 3, 333-338.	2.2	2
68	Synthesis and Molecular Structure of [<i>cis</i> -Rh(PMePh ₂) ₂ (NCCH _{3X-ray Structure Analysis Online, 2012, 28, 49-50.}	ւgt;)& է ;sut	o>2
69	Sterically Demanding Aryl Chlorides: No Longer a Problem for Borylations. ChemCatChem, 2012, 4, 47-49.	3.7	16
70	Arylspiroboronate esters: from lithium batteries to wood preservatives to catalysis. Chemical Society Reviews, 2011, 40, 1446-1458.	38.1	43
71	Addition of boranes to N-aryl-salicylaldimines: Intramolecular hydrogenation of imines. Dalton Transactions, 2011, 40, 4707.	3.3	8
72	Synthesis and Molecular Structure of 4,6-Di-tert-butyl-2-mesitylbenzo-[d][1,3,2]dioxaborole. X-ray Structure Analysis Online, 2011, 27, 33-34.	0.2	1

#	Article	IF	CITATIONS
73	Synthesis and Molecular Structure of Di(3,5-di-tert-butylcatecholato)-dicyclopentadienylzirconium(IV). X-ray Structure Analysis Online, 2011, 27, 45-46.	0.2	3
74	Synthesis, characterization and antifungal studies of arylspiroborates derived from 4-nitrocatechol. Journal of Molecular Structure, 2011, 1002, 24-27.	3.6	6
75	Palladium salicylaldimine complexes derived from 2,3-dihydroxybenzaldehyde. Inorganica Chimica Acta, 2011, 377, 84-90.	2.4	35
76	[Cp*lrCl2]2 catalyzed hydroborations of alkenes using a bulky dioxaborocine. Inorganica Chimica Acta, 2011, 365, 408-413.	2.4	11
77	Iridium Phosphane Complexes Containing Arylspiroboronate Esters for the Hydroboration of Alkenes. European Journal of Inorganic Chemistry, 2011, 2011, 2433-2438.	2.0	15
78	Cationic Ruthenium Complexes with an Arylspiroborate Counterion Derived from 3,5-Di-tert-butylcatechol. Mediterranean Journal of Chemistry, 2011, 1, 56-63.	0.7	0
79	Acetylacetonato(phosphane)iridium Complexes: Synthesis and Catalytic Activity in the Cyclization of Alkynoic Acids. European Journal of Inorganic Chemistry, 2010, 2010, 4602-4610.	2.0	25
80	BO Chemistry Comes Full Circle. Angewandte Chemie - International Edition, 2010, 49, 9045-9046.	13.8	22
81	Catalytic hydroboration of vinylarenes using a zwitterionic arylspiroboronate ester iridium complex. Inorganic Chemistry Communication, 2010, 13, 1396-1398.	3.9	11
82	Hydroboration of Vinyl Arenes Using SiO2-Supported Rhodium Catalysts. Synlett, 2009, 2009, 477-481.	1.8	1
83	Synthesis, structure, and antifungal activity of dihydropyridones containing boronate esters. Heteroatom Chemistry, 2009, 20, 56-63.	0.7	13
84	Rhodium complexes of (R)-Me-CATPHOS and (R)-(S)-JOSIPHOS: highly enantioselective catalysts for the asymmetric hydrogenation of (E)- and (Z)-β-aryl-β-(enamido)phosphonates. Tetrahedron: Asymmetry, 2009, 20, 1437-1444.	1.8	41
85	The transition metal catalyzed hydroboration of enamines. Journal of Organometallic Chemistry, 2009, 694, 3154-3159.	1.8	20
86	Synthesis and structure of indenyl rhodium(I) complexes containing unsaturated phosphines: catalyst precursors for alkene hydroboration. Dalton Transactions, 2009, , 1624.	3.3	36
87	Ni and Pd mediate asymmetric organoboron synthesis with ester functionality at the β-position. Organic and Biomolecular Chemistry, 2009, 7, 4674.	2.8	85
88	Synthesis, characterization, and reactivity of a novel thallium arylspiroboronate ester. Canadian Journal of Chemistry, 2009, 87, 139-145.	1.1	15
89	Synthesis of boron macrocycles from 1,2â€aminoalcohols and 2â€formylphenylboronic acid. Journal of Heterocyclic Chemistry, 2008, 45, 1415-1418.	2.6	2
90	4,4,5,5â€Tetraphenylâ€1,3,2â€dioxaborolane: A Bulky Borane for the Transition Metal Catalysed Hydroboration of Alkenes. European Journal of Inorganic Chemistry, 2008, 2008, 779-785.	2.0	23

#	Article	IF	CITATIONS
91	Synthesis, Characterization, and Antifungal Activity of Boronâ€Containing Thiosemicarbazones. Chemistry and Biodiversity, 2008, 5, 2415-2422.	2.1	36
92	Synthesis, Characterization, and Reactivity of Rhodium(I) Acetylacetonato Complexes Containing Pyridinecarboxaldimine Ligands. Inorganic Chemistry, 2008, 47, 8727-8735.	4.0	28
93	Synthesis and Molecular Structure of trans-Dichlorodi((4-fluorophenyl)-methanamine)palladium(II). Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X223-X224.	0.1	1
94	Ethyl 6-methyl-4-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-3-yl]-2-thioxo-1,2,3,4-tetrahydropyrimidine-5 Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o929-o929.	-c arb oxyla	ite4
95	Synthesis, characterization, and reactivity of Pd(II) salicylaldimine complexes derived from aminophenols. Canadian Journal of Chemistry, 2007, 85, 392-399.	1.1	12
96	A report on the "new frontiers in group 13 chemistry―symposium from the 88th Canadian Society for Chemistry Conference and Exhibition. Heteroatom Chemistry, 2007, 18, 323-332.	0.7	0
97	Metal catalysed hydroboration of vinyl sulfides, sulfoxides, sulfones, and sulfonates. Journal of Molecular Catalysis A, 2007, 275, 91-100.	4.8	12
98	Chloridobis(η5-cyclopentadienyl)(4-methoxyphenethyl)zirconium(IV). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2790-m2790.	0.2	0
99	Effect of a Novel Molybdenum Ascorbate Complex on Ex Vivo Myocardial Performance in Chemical??Diabetes Mellitus. Drugs in R and D, 2006, 7, 119-125.	2.2	4
100	Rhodium(I) acetylacetonato complexes containing phosphinoalkynes as catalysts for the hydroboration of vinylarenes. Canadian Journal of Chemistry, 2006, 84, 146-153.	1.1	21
101	Catalytic Alkene Hydroboration Mediated by Cationic and Formally Zwitterionic Rhodium(I) and Iridium(I) Derivatives of a P,N-Substituted Indene. Organometallics, 2006, 25, 5965-5968.	2.3	38
102	N-[(Benzylcarbamoyl)(phenyl)methyl]-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]benzamide. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2207-o2208.	0.2	0
103	7-Hydroxy-1-methoxy-6-methyl-1,3-dihydrofuro[3,4-c]pyridinium chloride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5263-o5264.	0.2	1
104	Bulky rhodium diimine complexes for the catalyzed borylation of vinylarenes. Inorganic Chemistry Communication, 2006, 9, 788-791.	3.9	26
105	Novel rhodium complexes containing a bulky iminophosphine ligand and their use as catalysts for the hydroboration of vinylarenes. Inorganica Chimica Acta, 2006, 359, 2771-2779.	2.4	21
106	Catalyzed hydroboration of nitrostyrenes and 4-vinylaniline: a mild and selective route to aniline derivatives containing boronate esters. Tetrahedron Letters, 2006, 47, 2419-2422.	1.4	20
107	Palladium(II) Pyridinecarboxaldimine Complexes Derived from Unsaturated Amines. Transition Metal Chemistry, 2006, 31, 13-18.	1.4	8
108	Synthesis and molecular structure of 4,4,5,5-tetramethyl-2-(1-(phenylsulfonyl)propan-2-yl)-1,3,2-dioxaborolane. Journal of Chemical Crystallography, 2006, 36, 661-665.	1.1	2

#	Article	IF	CITATIONS
109	Synthesis, characterization, and cytotoxicities of platinum(II) complexes bearing pyridinecarboxaldimines containing bulky aromatic groups. Inorganica Chimica Acta, 2005, 358, 63-69.	2.4	30
110	Palladium salicylaldimine complexes containing boronate esters. Transition Metal Chemistry, 2005, 30, 63-68.	1.4	19
111	Palladium(II) Schiff base complexes derived from sulfanilamides and aminobenzothiazoles. Transition Metal Chemistry, 2005, 30, 411-418.	1.4	60
112	(Z)-1-Phenyl-3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylamino]but-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3147-o3148.	0.2	0
113	Synthesis and catalysed hydroboration of styryl sulfonamides. Canadian Journal of Chemistry, 2005, 83, 661-667.	1.1	10
114	Late metal salicylaldimine complexes derived from 5-aminosalicylic acid — Molecular structure of a zwitterionic mono Schiff base zinc complex. Canadian Journal of Chemistry, 2005, 83, 1063-1070.	1.1	15
115	Salicylaldimine dimers derived from 2-H2NC6H4Bpin (pinâ€,=â€,1,2-O2C2Me4). Canadian Journal of Chemistry, 2005, 83, 1158-1163.	1.1	3
116	Dihydropyrimidinones containing boronic acids. Canadian Journal of Chemistry, 2005, 83, 2052-2059.	1.1	29
117	Synthesis and reactivity of sulfonamides containing boronate esters. Heteroatom Chemistry, 2004, 15, 369-375.	0.7	5
118	A gentle and efficient route for the deoxygenation of sulfoxides using catecholborane (HBcat;) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 38
119	Pyridyl benzimidazole, benzoxazole, and benzothiazole platinum complexes. Polyhedron, 2004, 23, 155-160.	2.2	57
120	Reactions of hydroborating reagents with phosphinorhodium hydride complexes: molecular structures of a Rh2B3 metallaborane cluster, an L2Rh(η2-H2BR2) complex and a mixed valence Rh dimer containing a semi-bridging Bcat (cat=1,2-O2C6H4) group. Polyhedron, 2004, 23, 2665-2677.	2.2	83
121	Synthesis, characterization, and cytotoxicities of palladium(II) and platinum(II) complexes containing fluorinated pyridinecarboxaldimines. Polyhedron, 2004, 23, 2169-2176.	2.2	39
122	Platinum pyridinecarboxaldimine complexes containing boronate esters. Canadian Journal of Chemistry, 2004, 82, 1692-1699.	1.1	8
123	Dioxomolybdenum(VI) complexes containing 1-alkyl-2-ethyl-3-hydroxy-4-pyridin-4(1H)-ones. Transition Metal Chemistry, 2003, 28, 103-109.	1.4	5
124	Catalyzed hydroboration of allyl sulfonamides. Journal of Organometallic Chemistry, 2003, 680, 143-147.	1.8	10
125	Novel reactivity of unconjugated diimines with [PtCl2(coe)]2 (coe=cis-cyclooctene). Inorganic Chemistry Communication, 2003, 6, 1086-1090.	3.9	2

¹²⁶²⁻Ethyl-3-hydroxy-1-morpholinopyridin-4(1H)-one. Acta Crystallographica Section E: Structure Reports
Online, 2003, 59, 057-058.0.20

#	Article	IF	CITATIONS
127	2-Thiophen-2-ylbenzothiazole, -benzoxazole, and -benzimidazole platinum complexes. Canadian Journal of Chemistry, 2003, 81, 861-865.	1.1	7
128	Synthesis and antifungal and antibacterial bioactivity of cyclic diamines containing boronate esters. New Journal of Chemistry, 2003, 27, 1419.	2.8	67
129	Synthesis and in vitro reactivity of cis-dichloro-(pyridin-2-ylcarboxaldimine)platinum(II) complexes with DNA. Canadian Journal of Chemistry, 2003, 81, 269-274.	1.1	26
130	Synthesis and reactivity of palladium and platinum diimine complexes containing boronate esters. Canadian Journal of Chemistry, 2002, 80, 1217-1222.	1.1	14
131	Bifunctional Lewis Acid Reactivity of Diol-Derived Diboron Reagents. ACS Symposium Series, 2002, , 70-87.	0.5	17
132	Synthesis and reactivity of novel Schiff bases containing boronate esters. Canadian Journal of Chemistry, 2002, 80, 31-40.	1.1	22
133	A novel sulfonamide containing a boronate ester group. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, o1213-o1214.	0.2	2
134	Synthesis, characterisation and molecular structure of [Rh(COE)2(acac)] (COE=cyclooctene, η2-C8H14), an important starting material for the preparation of rhodium catalyst precursors. Journal of Organometallic Chemistry, 2002, 649, 199-203.	1.8	20
135	Synthesis and antifungal properties of benzylamines containing boronate esters. Canadian Journal of Chemistry, 2001, 79, 1115-1123.	1.1	32
136	Rhodium-catalyzed hydroborations of allylamine and allylimines ¹ . Canadian Journal of Chemistry, 2001, 79, 1898-1905.	1.1	44
137	Metal-Catalyzed Hydroboration and Diboration of Thiocarbonyls and Vinyl Sulfides. Organometallics, 2001, 20, 2130-2132.	2.3	54
138	Alkenylpyridine and alkenylamine complexes of palladium. Transition Metal Chemistry, 2001, 26, 261-266.	1.4	8
139	Synthesis and characterization of hydrophilic hydroxy-pyridinones and their complexes with molybdenum(VI). Australian Journal of Chemistry, 2000, 53, 687.	0.9	12
140	Synthesis and hydroboration of lipophilic hydroxy-pyridinones and their complexes with molybdenum(VI). Australian Journal of Chemistry, 2000, 53, 693.	0.9	9
141	Trans alkenylpyridine and alkenylamine complexes of platinum. Canadian Journal of Chemistry, 2000, 78, 568-576.	1.1	29
142	Metal catalysed addition of B–H and N–H bonds to aminopropyl vinyl ethers. Chemical Communications, 2000, , 51-52.	4.1	64
143	Synthesis, characterization, and biological relevance of hydroxypyrone and hydroxypyridinone complexes of molybdenum. Canadian Journal of Chemistry, 1999, 77, 1249-1261.	1.1	47
144	Reactions of aminoboron compounds with palladium and platinum complexes. Canadian Journal of Chemistry, 1999, 77, 1196-1207.	1.1	20

#	ARTICLE	, structure, and solution dynamics of indenyl rhodium complexes containing bulky	IF	CITATIONS
145				