Ronald J Warzoha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4944641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. International Journal of Heat and Mass Transfer, 2011, 54, 4429-4436.	2.5	148
2	Heat flow at nanoparticle interfaces. Nano Energy, 2014, 6, 137-158.	8.2	128
3	Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers. Applied Energy, 2015, 137, 716-725.	5.1	115
4	High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter, 2021, 4, 2448-2459.	5.0	100
5	Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. International Journal of Heat and Mass Transfer, 2014, 79, 314-323.	2.5	88
6	Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at interfaces. Journal of Applied Physics, 2015, 117, .	1.1	71
7	Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials. Applied Energy, 2015, 154, 271-276.	5.1	60
8	Effect of Graphene Layer Thickness and Mechanical Compliance on Interfacial Heat Flow and Thermal Conduction in Solid–Liquid Phase Change Materials. ACS Applied Materials & Interfaces, 2014, 6, 12868-12876.	4.0	55
9	Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon, 2013, 61, 441-457.	5.4	42
10	Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	38
11	Low-force elastocaloric refrigeration via bending. Applied Physics Letters, 2021, 118, .	1.5	35
12	Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology. International Journal of Heat and Mass Transfer, 2014, 71, 790-807.	2.5	33
13	Solid-state thermal energy storage using reversible martensitic transformations. Applied Physics Letters, 2019, 114, .	1.5	33
14	Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point. Applied Energy, 2014, 132, 496-506.	5.1	32
15	Determining the thermal conductivity of liquids using the transient hot disk method. Part I: Establishing transient thermal-fluid constraints. International Journal of Heat and Mass Transfer, 2014, 71, 779-789.	2.5	29
16	Quantification of the Impact of Embedded Graphite Nanofibers on the Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes. Journal of Heat Transfer, 2012, 134, .	1.2	24
17	Nanoscale thermal transport in amorphous and crystalline GeTe thin-films. Applied Physics Letters, 2019, 115, .	1.5	19
18	High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions. Review of Scientific Instruments, 2017, 88, 094901.	0.6	15

Ronald J Warzoha

#	Article	IF	CITATIONS
19	Grain growth-induced thermal property enhancement of NiTi shape memory alloys for elastocaloric refrigeration and thermal energy storage systems. International Journal of Heat and Mass Transfer, 2020, 154, 119760.	2.5	15
20	Strained Polymer Thermal Conductivity Enhancement Counteracted by Additional Off-Axis Strain. Macromolecules, 2020, 53, 11089-11097.	2.2	11
21	Molecular Tuning of the Vibrational Thermal Transport Mechanisms in Fullerene Derivative Solutions. ACS Nano, 2017, 11, 1389-1396.	7.3	10
22	Experimental Characterization of the Thermal Diffusivity of Paraffin Phase Change Material Embedded With Herringbone Style Graphite Nanofibers. , 2012, , .		8
23	Maximum Resolution of a Probe-Based, Steady-State Thermal Interface Material Characterization Instrument. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.2	8
24	Steady-state measurements of thermal transport across highly conductive interfaces. International Journal of Heat and Mass Transfer, 2019, 130, 874-881.	2.5	8
25	Theoretical Paradigm for Thermal Rectification via Phonon Filtering and Spectral Confinement. Physical Review Letters, 2020, 124, 075903.	2.9	6
26	Evaluation of methods to fully saturate carbon foam with paraffin wax phase change material for energy storage. , 2012, , .		5
27	Effect of Grain Size on the Thermal Properties of Nickel-Titanium Shape Memory Alloys Across the Martensite-Austenite Phase Transition. , 2019, , .		5
28	Elimination of Extreme Boundary Scattering via Polymer Thermal Bridging in Silica Nanoparticle Packings: Implications for Thermal Management. ACS Applied Nano Materials, 2019, 2, 6662-6669.	2.4	5
29	Processing and Characterization of Silicon Nitride Nanofiber Paper. Journal of Nanomaterials, 2013, 2013, 1-7.	1.5	4
30	Thermal Management of High Density Power Electronics Modules Using Dielectric Mineral Oil With Applications in the Electric Utility Field for Smart Grid Protection. Journal of Thermal Science and Engineering Applications, 2011, 3, .	0.8	3
31	Design Considerations for Miniaturized Steady-State Thermal Characterization Instruments. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1401-1410.	1.4	3
32	A numerical fitting routine for frequency-domain thermoreflectance measurements of nanoscale material systems having arbitrary geometries. Journal of Applied Physics, 2021, 129, .	1.1	3
33	A Computational Study of the Thermal Performance of a 15 kV Solid State Current Limiter Cooled by Immersion in Mineral Oil. , 2008, , .		1
34	Design of a Passive Cooling System for a Solid-State 15kV / 100kVA Intelligent Universal Transformer. , 2009, , .		1
35	Development and testing of subambient melt temperature nano-enhanced phase change materials. , 2012, , .		1
36	Improved methodology for calculating interfacial thermal resistance and uncertainty for		1

steady-state TIM testers with embedded probes. , 2016, , .

Ronald J Warzoha

#	Article	IF	CITATIONS
37	Design considerations for a miniaturized TIM tester with extremely high measurement resolution. , 2017, , .		1
38	Thermal Management of a 15â€,kV/100â€,kVA Intelligent Universal Transformer. Journal of Thermal Science and Engineering Applications, 2011, 3, .	0.8	0
39	Interface Density Effects on Cross-Plane Thermal Conductance of Nanolaminate Thin Films. , 2020, , .		Ο
40	Special Section on Nanoscale/Microscale Energy Transport, Conversion and Storage in Electronics Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	0
41	Special Issue Dedicated to Professor Avram Bar-Cohen. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	Ο
42	A Computational Study of the Thermal Performance of a 69 kV Solid State Current Limiter Submerged in FR3 Dielectric Coolant. , 2008, , .		0
43	A Computational Study of the Thermal Performance of a 69kV/3000A Solid State Current Limiter Under Transient Fault Current Loading. , 2009, , .		0
44	Donovan and Warzoha Reply:. Physical Review Letters, 2022, 128, 129602.	2.9	0