Gaurisankar Sa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4943793/publications.pdf Version: 2024-02-01

CALIDISANKAD SA

#	Article	IF	CITATIONS
1	FOXP3/HAT1 Axis Controls Treg Infiltration in the Tumor Microenvironment by Inducing CCR4 Expression in Breast Cancer. Frontiers in Immunology, 2022, 13, 740588.	4.8	23
2	Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape. Current Research in Immunology, 2021, 2, 132-141.	2.8	27
3	GFI1/HDAC1â€axis differentially regulates immunosuppressive CD73 in human tumorâ€associated FOXP3 ⁺ Th17 and inflammationâ€linked Th17 cells. European Journal of Immunology, 2021, 51, 1206-1217.	2.9	6
4	Curcumin as an Adjuvant to Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 675923.	2.8	27
5	Transcriptional regulation of VEGFA expression in T-regulatory cells from breast cancer patients. Cancer Immunology, Immunotherapy, 2021, 70, 1877-1891.	4.2	8
6	The Adroitness of Andrographolide as a Natural Weapon Against Colorectal Cancer. Frontiers in Pharmacology, 2021, 12, 731492.	3.5	7
7	Regulatory lymphocytes: the dice that resolve the tumor endgame. Applied Cancer Research, 2020, 40, .	1.0	7
8	Integrin-EGFR interaction regulates anoikis resistance in colon cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 958-971.	4.9	34
9	Cancer immunotherapy: present scenarios and the future of immunotherapy. Nucleus (India), 2019, 62, 143-154.	2.2	Ο
10	T-memory cells against cancer: Remembering the enemy. Cellular Immunology, 2019, 338, 27-31.	3.0	16
11	Andrographolide binds to ATP-binding pocket of VEGFR2 to impede VEGFA-mediated tumor-angiogenesis. Scientific Reports, 2019, 9, 4073.	3.3	25
12	Truncated G-Quadruplex Isomers Cross-Talk with the Transcription Factors To Maintain Homeostatic Equilibria in <i>c-MYC</i> Transcription. Biochemistry, 2019, 58, 1975-1991.	2.5	25
13	Providence of the CD25 ⁺ KIR ⁺ CD127 ^{â[^]} FOXP3 ^{â[^]} CD8 ⁺ Tâ€cell subset determines the dynamics of tumor immune surveillance. Immunology and Cell Biology, 2018, 96, 1035-1048.	2.3	8
14	Cancer-immune therapy: restoration of immune response in cancer by immune cell modulation. Nucleus (India), 2017, 60, 93-109.	2.2	4
15	Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Scientific Reports, 2017, 7, 1628.	3.3	41
16	New insights into therapeutic activity and anticancer properties of curcumin. Journal of Experimental Pharmacology, 2017, Volume 9, 31-45.	3.2	155
17	G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53. Scientific Reports, 2016, 6, 32626.	3.3	28
18	Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer. Scientific Reports, 2016, 6, 32979.	3.3	46

#	Article	IF	CITATIONS
19	<scp>MEK</scp> inhibition prevents tumourâ€shed transforming growth factorâ€ <i>β</i> â€induced Tâ€regulatory cell augmentation in tumour milieu. Immunology, 2015, 144, 561-573.	4.4	38
20	Curcumin and tumor immune-editing: resurrecting the immune system. Cell Division, 2015, 10, 6.	2.4	105
21	Sulphur alters NFκB-p300 cross-talk in favour of p53–p300 to induce apoptosis in non-small cell lung carcinoma. International Journal of Oncology, 2015, 47, 573-582.	3.3	20
22	Structural and sequential context of p53: A review of experimental and theoretical evidence. Progress in Biophysics and Molecular Biology, 2015, 117, 250-263.	2.9	48
23	Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Translational Research, 2015, 165, 558-577.	5.0	40
24	GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway. PLoS ONE, 2015, 10, e0134425.	2.5	22
25	Republished: Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce apoptosis in non-small cell lung carcinoma. Indian Journal of Research in Homoeopathy, 2015, 9, 288.	0.1	2
26	Capsaicin-Induced Activation of p53-SMAR1 Auto-Regulatory Loop Down-Regulates VEGF in Non-Small Cell Lung Cancer to Restrain Angiogenesis. PLoS ONE, 2014, 9, e99743.	2.5	63
27	The novel immunotherapeutic molecule T11TS modulates glioma-induced changes of key components of the immunological synapse in favor of T cell activation and glioma abrogation. Journal of Neuro-Oncology, 2014, 120, 19-31.	2.9	16
28	Role of Cyclooxygenase 2 (COX-2) in Prognosis of Breast Cancer. Indian Journal of Surgical Oncology, 2014, 5, 59-65.	0.7	49
29	Inhibition of Epithelial to Mesenchymal Transition by E-cadherin Up-regulation via Repression of Slug Transcription and Inhibition of E-cadherin Degradation. Journal of Biological Chemistry, 2014, 289, 25431-25444.	3.4	86
30	Nuclear Matrix Protein SMAR1 Represses c-Fos-mediated HPV18 E6 Transcription through Alteration of Chromatin Histone Deacetylation. Journal of Biological Chemistry, 2014, 289, 29074-29085.	3.4	31
31	Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells. Oncology Reports, 2014, 31, 1589-1598.	2.6	28
32	Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-1°B pathways. Journal of Nutritional Biochemistry, 2013, 24, 2040-2050.	4.2	126
33	Calcarea carbonica induces apoptosis in cancer cells in p53-dependent manner via an immuno-modulatory circuit. BMC Complementary and Alternative Medicine, 2013, 13, 230.	3.7	33
34	Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 589-604.	4.9	33
35	Nifetepimine, a Dihydropyrimidone, Ensures CD4+ T Cell Survival in a Tumor Microenvironment by Maneuvering Sarco(endo)plasmic Reticulum Ca2+ ATPase (SERCA). Journal of Biological Chemistry, 2012, 287, 32881-32896.	3.4	21
36	Curcumin: The multi-targeted therapy for cancer regression. Frontiers in Bioscience - Scholar, 2012, S4, 335.	2.1	30

#	Article	IF	CITATIONS
37	Curcumin The multi-targeted therapy for cancer regression. Frontiers in Bioscience - Scholar, 2012, S4, 335-355.	2.1	39
38	Death by design: where curcumin sensitizes drug-resistant tumours. Anticancer Research, 2012, 32, 2567-84.	1.1	49
39	Curcumin Enhances the Efficacy of Chemotherapy by Tailoring p65NFκB-p300 Cross-talk in Favor of p53-p300 in Breast Cancer. Journal of Biological Chemistry, 2011, 286, 42232-42247.	3.4	95
40	Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Molecular and Cellular Biochemistry, 2010, 336, 85-95.	3.1	57
41	Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cellular and Molecular Immunology, 2010, 7, 306-315.	10.5	158
42	Gain of Cellular Adaptation Due to Prolonged p53 Impairment Leads to Functional Switchover from p53 to p73 during DNA Damage in Acute Myeloid Leukemia Cells. Journal of Biological Chemistry, 2010, 285, 33104-33112.	3.4	34
43	Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis, 2010, 31, 259-268.	2.8	57
44	GD3, an Overexpressed Tumor-Derived Ganglioside, Mediates the Apoptosis of Activated but not Resting T Cells. Cancer Research, 2009, 69, 3095-3104.	0.9	57
45	Tumor-Shed PGE2 Impairs IL2Rγc-Signaling to Inhibit CD4+ T Cell Survival: Regulation by Theaflavins. PLoS ONE, 2009, 4, e7382.	2.5	27
46	Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 771-781.	4.9	61
47	Anti cancer effects of curcumin: cycle of life and death. Cell Division, 2008, 3, 14.	2.4	296
48	GM1 and Tumor Necrosis Factor-α, Overexpressed in Renal Cell Carcinoma, Synergize to Induce T-Cell Apoptosis. Cancer Research, 2008, 68, 2014-2023.	0.9	38
49	Renal Cell Carcinoma Tumors Induce T Cell Apoptosis through Receptor-Dependent and Receptor-Independent Pathways. Journal of Immunology, 2008, 180, 4687-4696.	0.8	43
50	TNF-α Induction of GM2 Expression on Renal Cell Carcinomas Promotes T Cell Dysfunction. Journal of Immunology, 2007, 178, 6642-6652.	0.8	25
51	Curcumin Prevents Tumor-induced T Cell Apoptosis through Stat-5a-mediated Bcl-2 Induction. Journal of Biological Chemistry, 2007, 282, 15954-15964.	3.4	96
52	Tumor-Induced Oxidative Stress Perturbs Nuclear Factor-κB Activity-Augmenting Tumor Necrosis Factor-α–Mediated T-Cell Death: Protection by Curcumin. Cancer Research, 2007, 67, 362-370.	0.9	99
53	Black Tea-Induced Decrease in IL-10 and TGF-β of Tumor Cells Promotes Th1/Tc1 Response in Tumor Bearer. Nutrition and Cancer, 2007, 58, 213-221.	2.0	6
54	Tumor-induced thymic involution via inhibition of IL-7Rα and its JAK-STAT signaling pathway: Protection by black tea. International Immunopharmacology, 2006, 6, 433-444.	3.8	19

#	Article	IF	CITATIONS
55	Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice. Toxicology, 2006, 227, 94-104.	4.2	69
56	GM2 Expression in Renal Cell Carcinoma: Potential Role in Tumor-Induced T-Cell Dysfunction. Cancer Research, 2006, 66, 6816-6825.	0.9	82
57	Black tea induces tumor cell apoptosis by Bax translocation, loss in mitochondrial transmembrane potential, cytochrome c release and caspase activation. International Journal of Cancer, 2005, 117, 308-315.	5.1	21
58	The Regulation of S Phase Initiation by p27Kip1 in NIH3T3 Cells. Cell Cycle, 2005, 4, 611-620.	2.6	15
59	Curcumin Selectively Induces Apoptosis in Deregulated Cyclin D1-expressed Cells at G2 Phase of Cell Cycle in a p53-dependent Manner. Journal of Biological Chemistry, 2005, 280, 20059-20068.	3.4	279
60	Failure in peripheral immuno-surveillance due to thymic atrophy: Importance of thymocyte maturation and apoptosis in adult tumor-bearer. Life Sciences, 2005, 77, 2703-2716.	4.3	12
61	Over-expressed IgG2 antibodies against O-acetylated sialoglycoconjugates incapable of proper effector functioning in childhood acute lymphoblastic leukemia. International Immunology, 2004, 17, 177-191.	4.0	17
62	Black tea protects immunocytes from tumor-induced apoptosis by changing Bcl-2/Bax ratio. Cancer Letters, 2004, 209, 147-154.	7.2	52
63	P27 expression is regulated by separate signaling pathways, downstream of Ras, in each cell cycle phase. Experimental Cell Research, 2004, 300, 427-439.	2.6	36
64	Apoptogenic effects of black tea on Ehrlich's ascites carcinoma cell. Carcinogenesis, 2003, 24, 75-80.	2.8	62
65	Ras Is Active Throughout the Cell Cycle, but Is Able to Induce Cyclin D1 Only During G2 Phase. Cell Cycle, 2002, 1, 46-54.	2.6	27
66	Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters, 2002, 512, 334-340.	2.8	358
67	Protein A-induced apoptosis of cancer cells is effected by soluble immune mediators. Cancer Immunology, Immunotherapy, 2002, 51, 376-380.	4.2	18
68	Ras is active throughout the cell cycle, but is able to induce cyclin D1 only during G2 phase. Cell Cycle, 2002, 1, 50-8.	2.6	17
69	Mechanisms of Curcumin-Induced Apoptosis of Ehrlich's Ascites Carcinoma Cells. Biochemical and Biophysical Research Communications, 2001, 288, 658-665.	2.1	118
70	Protection of apoptotic cell death by protein A. Apoptosis: an International Journal on Programmed Cell Death, 2000, 5, 509-514.	4.9	6
71	Protein A of Staphylococcus aureus evokes Th1 type response in mice. Immunology Letters, 1999, 67, 157-165.	2.5	29
72	Mechanisms of protein A superantigen-induced signal transduction for proliferation of mouse B cell. Immunology Letters, 1999, 70, 43-51.	2.5	18

#	Article	IF	CITATIONS
73	Basic fibroblast growth factor stimulates cytosolic phospholipase A2, phospholipase C-gamma1 and phospholipase D through distinguishable signaling mechanisms. , 1999, 198, 19-30.		22
74	S. aureusSuperantigen Protein A Expands CD4+/CD8+/CD19+/CD34+Cells in Mice: A Potential Immunorestorer. Biochemical and Biophysical Research Communications, 1999, 256, 142-146.	2.1	12
75	Induction of Cell Proliferation and Apoptosis: Dependence on the Dose of the Inducer. Biochemical and Biophysical Research Communications, 1999, 260, 105-110.	2.1	30
76	Protection by Protein A of Apoptotic Cell Death Caused by Anti-AIDS Drug Zidovudine. Biochemical and Biophysical Research Communications, 1999, 264, 601-604.	2.1	12
77	Protein A Induces NO Production: Involvement of Tyrosine Kinase, Phospholipase C, and Protein Kinase C. Biochemical and Biophysical Research Communications, 1998, 250, 425-429.	2.1	21
78	Activation of Cytosolic Phospholipase A by Basic Fibroblast Growth Factor via a p42 Mitogen-activated Protein Kinase-dependent Phosphorylation Pathway in Endothelial Cells. Journal of Biological Chemistry, 1995, 270, 2360-2366.	3.4	150
79	Characterization and binding properties of human fetal lung fatty acid-binding proteins. Molecular and Cellular Biochemistry, 1993, 129, 67-75.	3.1	1
80	Characterization of cardiac fatty-acid-binding protein from human placenta. Comparison with placenta hepatic types. FEBS Journal, 1993, 211, 725-730.	0.2	20
81	Relationship between fatty acid binding proteins, acetyl-CoA formation and fatty acid synthesis in developing human placenta. Journal of Biosciences, 1991, 16, 235-242.	1.1	4