
## Lorenzo Melchor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4943758/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reproductive history determines <i>Erb b 2</i> locus amplification, WNT signalling and tumour phenotype in a murine breast cancer model. DMM Disease Models and Mechanisms, 2021, 14, .                                                       | 1.2 | 3         |
| 2  | Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients.<br>Haematologica, 2019, 104, 1440-1450. | 1.7 | 67        |
| 3  | Cumulative advantages and social capabilities in scientific mobility in the Health Sciences: The Spanish case. PLoS ONE, 2017, 12, e0173204.                                                                                                  | 1.1 | 5         |
| 4  | Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids.<br>Nature Communications, 2016, 7, 13207.                                                                                                     | 5.8 | 88        |
| 5  | The Spectrum and Clinical Impact of Epigenetic Modifier Mutations in Myeloma. Clinical Cancer Research, 2016, 22, 5783-5794.                                                                                                                  | 3.2 | 81        |
| 6  | Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations. Blood, 2015, 125, 831-840.                                                                                 | 0.6 | 57        |
| 7  | APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nature Communications, 2015, 6, 6997.                                                                                              | 5.8 | 261       |
| 8  | Wholeâ€exome <scp>DNA</scp> sequence analysis of <i>Brca2</i> ―and <i>Trp53</i> â€deficient mouse<br>mammary gland tumours. Journal of Pathology, 2015, 236, 186-200.                                                                         | 2.1 | 14        |
| 9  | Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients<br>With Newly Diagnosed Myeloma. Journal of Clinical Oncology, 2015, 33, 3911-3920.                                                          | 0.8 | 463       |
| 10 | The impact of long-term lenalidomide exposure on the cellular composition of bone marrow. Leukemia and Lymphoma, 2014, 55, 2665-2668.                                                                                                         | 0.6 | 2         |
| 11 | Biology and Treatment of Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, S65-S70.                                                                                                                                                 | 0.2 | 15        |
| 12 | Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia, 2014, 28, 384-390.                                                                             | 3.3 | 252       |
| 13 | Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models. Journal of Pathology, 2014, 233, 124-137.                                                                        | 2.1 | 47        |
| 14 | Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia, 2014, 28, 1705-1715.                                                            | 3.3 | 207       |
| 15 | Serum free immunoglobulin light chain evaluation as a marker of impact from intraclonal heterogeneity on myeloma outcome. Blood, 2014, 123, 3414-3419.                                                                                        | 0.6 | 68        |
| 16 | The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. British Journal of<br>Haematology, 2014, 165, 441-454.                                                                                                         | 1.2 | 91        |
| 17 | The Spectrum of Epigenetic Mutations in Myeloma and Their Clinical Impact. Blood, 2014, 124, 2194-2194.                                                                                                                                       | 0.6 | 2         |
| 18 | Mutational Patterns and Copy Number Changes at Diagnosis Are a Powerful Tool to Predict Outcome:<br>Result of the Sequencing Study of 463 Newly Diagnosed Myeloma Trial Patients. Blood, 2014, 124,<br>637-637.                               | 0.6 | 1         |

LORENZO MELCHOR

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Extent of Intra-Clonal Genetic Diversity within the Myeloma Clone Is a Predictive Biomarker of Progression and Outcome after Treatment. Blood, 2014, 124, 640-640.                                                                               | 0.6 | 0         |
| 20 | The complex genetic landscape of familial breast cancer. Human Genetics, 2013, 132, 845-863.                                                                                                                                                         | 1.8 | 125       |
| 21 | Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood, 2013, 122, 219-226.                                                                                    | 0.6 | 147       |
| 22 | Co-Existent Hyperdiploidy Does Not Abrogate The Poor Prognosis Associated With Adverse<br>Cytogenetics In Myeloma. Blood, 2013, 122, 529-529.                                                                                                        | 0.6 | 1         |
| 23 | Discovery Of Genome Wide Epigenetic Programming In t(4;14) Multiple Myeloma and In The Progression<br>From Myeloma To Plasma Cell Leukemia Via Methyl Binding Domain Protein Capture and Sequencing.<br>Blood, 2013, 122, 599-599.                   | 0.6 | Ο         |
| 24 | Single-Cell Genetic Analysis Reveals The Genetic Composition Of Founder Clones, Phylogenetic<br>Patterns Of Branching and Parallel Evolution, and Clonal Fluctuations Following Patient Treatment<br>In Multiple Myeloma. Blood, 2013, 122, 398-398. | 0.6 | 0         |
| 25 | Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood, 2012, 120, 1077-1086.                                                                                               | 0.6 | 231       |
| 26 | Gene amplification of the transcription factor DP1 and <i>CTNND1</i> in human lung cancer. Journal of Pathology, 2010, 222, 89-98.                                                                                                                   | 2.1 | 33        |
| 27 | Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Research, 2009, 11, R86.                                                             | 2.2 | 75        |
| 28 | Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene, 2008, 27, 3165-3175.                                                                                      | 2.6 | 74        |
| 29 | Highway to heaven: mammary gland development and differentiation. Breast Cancer Research, 2008, 10, 305.                                                                                                                                             | 2.2 | 6         |
| 30 | An integrative hypothesis about the origin and development of sporadic and familial breast cancer subtypes. Carcinogenesis, 2008, 29, 1475-1482.                                                                                                     | 1.3 | 45        |
| 31 | Estrogen Receptor Status Could Modulate the Genomic Pattern in Familial and Sporadic Breast<br>Cancer. Clinical Cancer Research, 2007, 13, 7305-7313.                                                                                                | 3.2 | 31        |
| 32 | Genomic analysis of the 8p11-12 amplicon in familial breast cancer. International Journal of Cancer, 2007, 120, 714-717.                                                                                                                             | 2.3 | 30        |
| 33 | Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Modern Pathology, 2007, 20, 1298-1306.                                                                    | 2.9 | 48        |
| 34 | A haplotype containing thep53polymorphisms Ins16bp and Arg72Pro modifies cancer risk inBRCA2mutation carriers. Human Mutation, 2006, 27, 242-248.                                                                                                    | 1.1 | 35        |
| 35 | About the origin and development of hereditary conventional renal cell carcinoma in a<br>four-generation t(3;8)(p14.1;q24.23) family. European Journal of Human Genetics, 2005, 13, 570-578.                                                         | 1.4 | 15        |
| 36 | Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array. Genes Chromosomes and Cancer, 2005, 42, 287-298.                                                      | 1.5 | 40        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Accumulation of Specific Amplifications Characterizes Two Different Genomic Pathways of Evolution of Familial Breast Tumors. Clinical Cancer Research, 2005, 11, 8577-8584.                                   | 3.2 | 16        |
| 38 | Understanding the cytological diploidization mechanism of polyploid wild wheats. Cytogenetic and Genome Research, 2005, 109, 205-209.                                                                             | 0.6 | 5         |
| 39 | A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clinical Cancer Research, 2005, 11, 1146-53. | 3.2 | 51        |