
Dimitris P Makris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 2007, 20, 125-132.	3.9	425
2	Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. Journal of Agricultural and Food Chemistry, 2001, 49, 5736-5742.	5.2	338
3	Correlation of Pigment and Flavanol Content with Antioxidant Properties in Selected Aged Regional Wines from Greece. Journal of Food Composition and Analysis, 2002, 15, 655-665.	3.9	316
4	Domestic Processing of Onion Bulbs (Allium cepa) and Asparagus Spears (Asparagus officinalis):Â Effect on Flavonol Content and Antioxidant Status. Journal of Agricultural and Food Chemistry, 2001, 49, 3216-3222.	5.2	209
5	Heat-Induced, Metal-Catalyzed Oxidative Degradation of Quercetin and Rutin (Quercetin) Tj ETQq1 1 0.78431 2000, 48, 3830-3838.	4 rgBT /Ove 5.2	erlock 10 Tf 5 179
6	Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chemistry, 2005, 89, 1-9.	8.2	168
7	Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT - Food Science and Technology, 2013, 53, 522-529.	5.2	153
8	Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 2008, 392, 977-985.	3.7	147
9	Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): association with antiradical activity. Journal of Food Composition and Analysis, 2005, 18, 375-386.	3.9	146
10	Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. Journal of Food Composition and Analysis, 2006, 19, 396-404.	3.9	146
11	Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 2016, 3, 120-127.	1.5	136
12	Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresource Technology, 2007, 98, 2963-2967.	9.6	134
13	A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Industrial Crops and Products, 2015, 77, 535-543.	5.2	123
14	Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste and Biomass Valorization, 2016, 7, 1377-1387.	3.4	120
15	Polyphenol characterization and encapsulation in \hat{I}^2 -cyclodextrin of a flavonoid-rich Hypericum perforatum (St John's wort) extract. LWT - Food Science and Technology, 2010, 43, 882-889.	5.2	103
16	Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta, 2006, 70, 1143-1152.	5.5	101
17	Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea) Tj ETQq1 1 0.78 89-95.	34314 rgBT 7.9	/Overlock 10 94
18	Thermal Stability of Anthocyanin Extract of <i>Hibiscus sabdariffa</i> L. in the Presence of β-Cyclodextrin. Journal of Agricultural and Food Chemistry, 2008, 56, 10303-10310.	5.2	88

#	Article	IF	CITATIONS
19	Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innovative Food Science and Emerging Technologies, 2009, 10, 246-252.	5.6	85
20	The effect of polyphenolic composition as related to antioxidant capacity in white wines. Food Research International, 2003, 36, 805-814.	6.2	83
21	Oxidation of caffeic acid in the presence of l-cysteine: isolation of 2-S-cysteinylcaffeic acid and evaluation of its antioxidant properties. Food Research International, 2005, 38, 395-402.	6.2	77
22	Hydroxyl Free Radical-Mediated Oxidative Degradation of Quercetin and Morin: A Preliminary Investigation. Journal of Food Composition and Analysis, 2002, 15, 103-113.	3.9	76
23	Biomimetic oxidation of quercetin: Isolation of a naturally occurring quercetin heterodimer and evaluation of its in vitro antioxidant properties. Food Research International, 2007, 40, 7-14.	6.2	74
24	An Investigation on the Recovery of Antioxidant Phenolics from Onion Solid Wastes Employing Water/Ethanol-Based Solvent Systems. Food and Bioprocess Technology, 2009, 2, 337-343.	4.7	74
25	Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants, 2019, 8, 586.	5.1	70
26	Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta, 2009, 79, 1311-1321.	5.5	65
27	Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Separation and Purification Technology, 2015, 149, 462-469.	7.9	65
28	Comparison of Quercetin and a Non-Orthohydroxy Flavonol As Antioxidants by Competing In Vitro Oxidation Reactions. Journal of Agricultural and Food Chemistry, 2001, 49, 3370-3377.	5.2	63
29	An investigation on structural aspects influencing product formation in enzymic and chemical oxidation of quercetin and related flavonols. Food Chemistry, 2002, 77, 177-185.	8.2	63
30	Polyphenolic Composition and Antioxidant Characteristics of Kumquat (Fortunella margarita) Peel Fractions. Plant Foods for Human Nutrition, 2009, 64, 297-302.	3.2	62
31	Optimisation of the extraction of pomegranate (Punica granatum) husk phenolics using water/ethanol solvent systems and response surface methodology. Industrial Crops and Products, 2014, 59, 216-222.	5.2	60
32	Optimisation of polyphenol extraction from Hypericum perforatum (St. John's Wort) using aqueous glycerol and response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 2015, 2, 1-8.	1.5	57
33	Extraction of Antioxidant Phenolics from Agri-Food Waste Biomass Using a Newly Designed Glycerol-Based Natural Low-Transition Temperature Mixture: A Comparison with Conventional Eco-Friendly Solvents. Recycling, 2016, 1, 194-204.	5.0	57
34	Ultrasound-Assisted Green Extraction of Eggplant Peel (Solanum melongena) Polyphenols Using Aqueous Mixtures of Glycerol and Ethanol: Optimisation and Kinetics. Environmental Processes, 2016, 3, 369-386.	3.5	57
35	Highly Efficient Extraction of Antioxidant Polyphenols from Olea europaea Leaves Using an Eco-friendly Glycerol/Glycine Deep Eutectic Solvent. Waste and Biomass Valorization, 2018, 9, 1985-1992.	3.4	57
36	Combination of Lactic Acid-Based Deep Eutectic Solvents (DES) with β-Cyclodextrin: Performance Screening Using Ultrasound-Assisted Extraction of Polyphenols from Selected Native Greek Medicinal Plants. Agronomy, 2017, 7, 54.	3.0	56

#	Article	IF	CITATIONS
37	Evaluation of the antiradical and reducing properties of selected Greek white wines: correlation with polyphenolic composition. Journal of the Science of Food and Agriculture, 2002, 82, 1014-1020.	3.5	53
38	Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Conversion and Biorefinery, 2016, 6, 289-299.	4.6	51
39	Characterisation of certain major polyphenolic antioxidants in grape (Vitis vinifera cv. Roditis) stems by liquid chromatography-mass spectrometry. European Food Research and Technology, 2008, 226, 1075-1079.	3.3	47
40	Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. Journal of Food Science and Technology, 2016, 53, 3939-3947.	2.8	47
41	Kinetics of browning onset in white wines: influence of principal redox-active polyphenols and impact on the reducing capacity. Food Chemistry, 2006, 94, 98-104.	8.2	46
42	A Green Extraction Process for Polyphenols from Elderberry (Sambucus nigra) Flowers Using Deep Eutectic Solvent and Ultrasound-Assisted Pretreatment. Molecules, 2020, 25, 921.	3.8	46
43	Investigation on biocatalytic properties of a peroxidase-active homogenate from onion solid wastes: An insight into quercetin oxidation mechanism. Process Biochemistry, 2008, 43, 861-867.	3.7	45
44	Natural food colorants derived from onion wastes: Application in a yoghurt product. Electrophoresis, 2018, 39, 1975-1983.	2.4	45
45	A Comparative Evaluation of Bio-solvents for the Efficient Extraction of Polyphenolic Phytochemicals: Apple Waste Peels as a Case Study. Waste and Biomass Valorization, 2015, 6, 1125-1133.	3.4	44
46	An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera) cultivated in Greece: implications for exploitation as a source of value-added phytochemicals. Phytochemical Analysis, 2005, 16, 17-23.	2.4	42
47	Extraction Kinetics of Phenolics from Carob (Ceratonia siliqua L.) Kibbles Using Environmentally Benign Solvents. Waste and Biomass Valorization, 2014, 5, 773-779.	3.4	40
48	An Investigation on Factors Affecting Recovery of Antioxidant Phenolics and Anthocyanins from Red Grape (Vitis vinifera L.) Pomace Employing Water/Ethanol-Based Solutions. American Journal of Food Technology, 2008, 3, 164-173.	0.2	40
49	Methyl β-cyclodextrin as a booster for the extraction for Olea europaea leaf polyphenols with a bio-based deep eutectic solvent. Biomass Conversion and Biorefinery, 2018, 8, 345-355.	4.6	39
50	Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules, 2020, 25, 5842.	3.8	38
51	Anthocyanin profiles of major red grape (<i>Vitis vinifera</i> L.) varieties cultivated in Greece and their relationship with <i>in vitro</i> antioxidant characteristics. International Journal of Food Science and Technology, 2009, 44, 2385-2393.	2.7	37
52	Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery, 2022, 12, 351-360.	4.6	37
53	Kinetics of Ultrasound-Assisted Polyphenol Extraction from Spent Filter Coffee Using Aqueous Glycerol. Chemical Engineering Communications, 2016, 203, 407-413.	2.6	36
54	Factorial design optimisation of grape (Vitis vinifera) seed polyphenol extraction. European Food Research and Technology, 2009, 229, 731-742.	3.3	35

#	Article	IF	CITATIONS
55	Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). Journal of Applied Research on Medicinal and Aromatic Plants, 2017, 6, 31-40.	1.5	34
56	Differentiation of Young Red Wines Based on Chemometrics of Minor Polyphenolic Constituents. Journal of Agricultural and Food Chemistry, 2007, 55, 3233-3239.	5.2	32
57	Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. European Food Research and Technology, 2017, 243, 1839-1848.	3.3	32
58	Storage of olives (Olea europaea) under CO2 atmosphere: Effect on anthocyanins, phenolics, sensory attributes and in vitro antioxidant properties. Food Chemistry, 2006, 99, 342-349.	8.2	31
59	Optimisation of organic solvent-free polyphenol extraction from Hypericum triquetrifolium Turra using Box–Behnken experimental design and kinetics. International Journal of Industrial Chemistry, 2015, 6, 85-92.	3.1	31
60	Screening of Natural Sodium Acetate-Based Low-Transition Temperature Mixtures (LTTMs) for Enhanced Extraction of Antioxidants and Pigments from Red Vinification Solid Wastes. Environmental Processes, 2017, 4, 123-135.	3.5	30
61	Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). Environments - MDPI, 2017, 4, 31.	3.3	30
62	Browning development in white wines: dependence on compositional parameters and impact on antioxidant characteristics. European Food Research and Technology, 2005, 220, 326-330.	3.3	29
63	Development of sodium propionate-based deep eutectic solvents for polyphenol extraction from onion solid wastes. Clean Technologies and Environmental Policy, 2019, 21, 1563-1574.	4.1	29
64	The Effect of Ultrasonication Pretreatment on the Production of Polyphenol-Enriched Extracts from Moringa oleifera L. (Drumstick Tree) Using a Novel Bio-Based Deep Eutectic Solvent. Applied Sciences (Switzerland), 2020, 10, 220.	2.5	29
65	Extraction of phenolics in liquid model matrices containing oak chips: Kinetics, liquid chromatography–mass spectroscopy characterisation and association with in vitro antiradical activity. Food Chemistry, 2008, 110, 263-272.	8.2	28
66	Stability and transformation of major flavonols in onion (Allium cepa) solid wastes. Journal of Food Science and Technology, 2012, 49, 489-494.	2.8	28
67	Development of a Green Process for the Preparation of Antioxidant and Pigment-Enriched Extracts from Winery Solid Wastes Using Response Surface Methodology and Kinetics. Chemical Engineering Communications, 2016, 203, 1317-1325.	2.6	27
68	Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology. Preparative Biochemistry and Biotechnology, 2016, 46, 176-182.	1.9	27
69	Green extraction processes for the efficient recovery of bioactive polyphenols from wine industry solid wastes – Recent progress. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 50-55.	5.9	27
70	Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the Effect of Ultrasound-Assisted Pretreatment. AgriEngineering, 2019, 1, 403-417.	3.2	27
71	Optimization of Pulsed Electric Field as Standalone "Green―Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants, 2021, 10, 1554.	5.1	27
72	Anthocyanin Composition and Colour Characteristics of Selected Aged Wines Produced in Greece. Journal of Wine Research, 2002, 13, 23-34.	1.5	25

#	Article	IF	CITATIONS
73	Enhanced-performance extraction of olive (Olea europaea) leaf polyphenols using L-lactic acid/ammonium acetate deep eutectic solvent combined with β-cyclodextrin: screening, optimisation, temperature effects and stability. Biomass Conversion and Biorefinery, 2021, 11, 1125-1136.	4.6	25
74	Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering, 2021, 5, 25.	2.4	24
75	Characterization of Polyphenolic Phytochemicals in Red Grape Pomace. International Journal of Waste Resources, 2013, 03, .	0.2	23
76	Copper(II)-mediated biomimetic oxidation of quercetin: generation of a naturally occurring oxidation product and evaluation of its in vitro antioxidant properties. European Food Research and Technology, 2007, 225, 435-441.	3.3	22
77	Use of Pulsed Electric Field as a Low-Temperature and High-Performance "Green―Extraction Technique for the Recovery of High Added Value Compounds from Olive Leaves. Beverages, 2021, 7, 45.	2.8	22
78	Effect of natural antioxidants on heat-induced, copper(II)-catalysed, oxidative degradation of quercetin and rutin (quercetin 3-O-rutinoside) in aqueous model systems. Journal of the Science of Food and Agriculture, 2002, 82, 1147-1153.	3.5	21
79	Implementation of response surface methodology to assess the antiradical behaviour in mixtures of ascorbic acid and α-tocopherol with grape (Vitis vinifera) stem extracts. Food Chemistry, 2012, 132, 351-359.	8.2	21
80	Nutritional Characterization of Leaves and Herbal Tea of <i>Moringa oleifera</i> Cultivated in Greece. Journal of Herbs, Spices and Medicinal Plants, 2017, 23, 320-333.	1.1	20
81	Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes. Recycling, 2017, 2, 3.	5.0	20
82	Polyphenolic Antioxidants from Agri-Food Waste Biomass. Antioxidants, 2019, 8, 624.	5.1	20
83	High-efficiency Extraction of Phenolics from Wheat Waste Biomass (Bran) by Combining Deep Eutectic Solvent, Ultrasound-assisted Pretreatment and Thermal Treatment. Environmental Processes, 2020, 7, 845-859.	3.5	20
84	Hydroxypropyl-β-Cyclodextrin as a Green Co-Solvent in the Aqueous Extraction of Polyphenols from Waste Orange Peels. Beverages, 2020, 6, 50.	2.8	19
85	Green Valorization of Olive Leaves to Produce Polyphenol-Enriched Extracts Using an Environmentally Benign Deep Eutectic Solvent. AgriEngineering, 2020, 2, 226-239.	3.2	19
86	Physical Properties of Chitosan Films Containing Pomegranate Peel Extracts Obtained by Deep Eutectic Solvents. Foods, 2021, 10, 1262.	4.3	19
87	<i>Origanum</i> species native to the island of Crete: <i>in vitro</i> antioxidant characteristics and liquid chromatography–mass spectrometry identification of major polyphenolic components. Natural Product Research, 2014, 28, 1284-1287.	1.8	18
88	Peroxidase-active cell free extract from onion solid wastes: biocatalytic properties and putative pathway of ferulic acid oxidation. Journal of Bioscience and Bioengineering, 2008, 106, 279-285.	2.2	17
89	Optimization of a Green Extraction/Inclusion Complex Formation Process to Recover Antioxidant Polyphenols from Oak Acorn Husks (Quercus Robur) Using Aqueous 2-Hydroxypropyl-β-Cyclodextrin/Glycerol Mixtures. Environments - MDPI, 2016, 3, 3.	3.3	17
90	Kinetics of Ultrasound-Assisted Flavonoid Extraction from Agri-Food Solid Wastes Using Water/Glycerol Mixtures. Resources, 2016, 5, 7.	3.5	17

#	Article	IF	CITATIONS
91	A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. Recycling, 2018, 3, 15.	5.0	16
92	Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiseri Using Hydroethanolic Mixtures. Oxygen, 2022, 2, 91-98.	5.0	16
93	Removal of olive mill waste water phenolics using a crude peroxidase extract from onion by-products. Environmental Chemistry Letters, 2010, 8, 271-275.	16.2	15
94	Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: caffeic acid oxidation. Biodegradation, 2009, 20, 143-153.	3.0	14
95	Stability effects of methyl β-cyclodextrin on Olea europaea leaf extracts in a natural deep eutectic solvent. European Food Research and Technology, 2018, 244, 1783-1792.	3.3	14
96	Polyphenol extraction from <i>Origanum dictamnus</i> using low-transition temperature mixtures composed of glycerol and organic salts: Effect of organic anion carbon chain length. Chemical Engineering Communications, 2018, 205, 1494-1506.	2.6	14
97	Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. Applied Sciences (Switzerland), 2022, 12, 831.	2.5	14
98	Interactions between quercetin and catechin in a model matrix: Effects on the in vitro antioxidant behaviour. Food Research International, 2007, 40, 819-826.	6.2	13
99	A Comparative Evaluation of Aqueous Natural Organic Acid Media for the Efficient Recovery of Flavonoids from Red Grape (Vitis vinifera) Pomace. Waste and Biomass Valorization, 2015, 6, 391-400.	3.4	13
100	High-Performance Green Extraction of Polyphenolic Antioxidants from Salvia fruticosa Using Cyclodextrins: Optimization, Kinetics, and Composition. Applied Sciences (Switzerland), 2020, 10, 3447.	2.5	13
101	Integrated Green Process for the Extraction of Red Grape Pomace Antioxidant Polyphenols Using Ultrasound-Assisted Pretreatment and β-Cyclodextrin. Beverages, 2021, 7, 59.	2.8	13
102	Hydrocaffeic acid oxidation by a peroxidase homogenate from onion solid wastes. European Food Research and Technology, 2008, 227, 1379-1386.	3.3	12
103	Comparison of fisetin and quercetin oxidation with a cellâ€free extract of onion trimmings and peel, plant waste, containing peroxidase enzyme: a further insight into flavonol degradation mechanism. International Journal of Food Science and Technology, 2010, 45, 2265-2271.	2.7	12
104	Chlorogenic Acid Oxidation by a Crude Peroxidase Preparation: Biocatalytic Characteristics and Oxidation Products. Food and Bioprocess Technology, 2012, 5, 243-251.	4.7	12
105	Kinetics of polyphenol extraction from wood chips in wine model solutions: effect of chip amount and botanical species. Journal of the Institute of Brewing, 2015, 121, 207-212.	2.3	12
106	Development of a Low-Temperature and High-Performance Green Extraction Process for the Recovery of Polyphenolic Phytochemicals from Waste Potato Peels Using Hydroxypropyl β-Cyclodextrin. Applied Sciences (Switzerland), 2020, 10, 3611.	2.5	12
107	Development of a Green Methodology for Simultaneous Extraction of Polyphenols and Pigments from Red Winemaking Solid Wastes (Pomace) Using a Novel Glycerol-Sodium Benzoate Deep Eutectic Solvent and Ultrasonication Pretreatment. Environments - MDPI, 2021, 8, 90.	3.3	12
108	Evolution of benzoate derivatives and their hydroxycinnamate analogues during ageing of white wines in oak barrels. Journal of Food Composition and Analysis, 2008, 21, 667-671.	3.9	11

#	Article	IF	CITATIONS
109	Effect of the degree of toasting on the extraction pattern and profile of antioxidant polyphenols leached from oak chips in model wine systems. European Food Research and Technology, 2015, 240, 1065-1074.	3.3	11
110	Accelerated Aging of the Traditional Greek Distillate Tsipouro Using Wooden Chips. Part I: Effect of Static Maceration vs. Ultrasonication on the Polyphenol Extraction and Antioxidant Activity. Beverages, 2017, 3, 5.	2.8	11
111	Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents. ChemEngineering, 2022, 6, 35.	2.4	11
112	Extraction of Polyphenolic Antioxidants from Red Grape Pomace and Olive Leaves: Process Optimization Using a Tailor-Made Tertiary Deep Eutectic Solvent. Sustainability, 2022, 14, 6864.	3.2	11
113	Interactions of natural antioxidants with red grape pomace anthocyanins in a liquid model matrix: Stability and copigmentation effects. Chemical Industry and Chemical Engineering Quarterly, 2011, 17, 59-66.	0.7	10
114	Major Antioxidant Polyphenolic Phytochemicals of ThreeSalviaSpecies Endemic to the Island of Crete. Journal of Herbs, Spices and Medicinal Plants, 2016, 22, 27-34.	1.1	10
115	Incorporation of 2-hydroxypropyl β-cyclodextrin in a biomolecule-based low-transition temperature mixture (LTTM) boosts efficiency of polyphenol extraction from Moringa oleifera Lam leaves. Journal of Applied Research on Medicinal and Aromatic Plants, 2018, 9, 62-69.	1.5	10
116	Pulsed Electric Field and Salvia officinalis L. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods, 2021, 10, 2014.	4.3	10
117	Cyclodextrins as high-performance green co-solvents in the aqueous extraction of polyphenols and anthocyanin pigments from solid onion waste. European Food Research and Technology, 2021, 247, 2831-2845.	3.3	10
118	Enhancement of Polyphenols Recovery from Rosa canina, Calendula officinalis and Castanea sativa Using Pulsed Electric Field. Beverages, 2021, 7, 63.	2.8	10
119	Pressurized Liquid Extraction of Polyphenols and Anthocyanins from Saffron Processing Waste with Aqueous Organic Acid Solutions: Comparison with Stirred-Tank and Ultrasound-Assisted Techniques. Sustainability, 2021, 13, 12578.	3.2	10
120	Deployment of response surface methodology to optimize recovery of grape (Vitis vinifera) stem and seed polyphenols. Procedia Food Science, 2011, 1, 1686-1693.	0.6	9
121	Optimization of Bioactive Substances in the Wastes of Some Selective Mediterranean Crops. Beverages, 2019, 5, 42.	2.8	9
122	Encapsulation of Moringa oleifera Extract in Ca-Alginate Chocolate Beads: Physical and Antioxidant Properties. Journal of Food Quality, 2021, 2021, 1-9.	2.6	9
123	Optimisation of Anthocyanin Recovery from Onion (Allium cepa) Solid Wastes Using Response Surface Methodology. Journal of Food Technology, 2010, 8, 183-186.	0.5	9
124	Batch Stirred-Tank Green Extraction of Salvia fruticosa Mill. Polyphenols Using Newly Designed Citrate-Based Deep Eutectic Solvents and Ultrasonication Pretreatment. Applied Sciences (Switzerland), 2020, 10, 4774.	2.5	8
125	Use of response surface methodology to evaluate the reducing power in binary solutions of ascorbic acid with natural polyphenolic antioxidants. International Journal of Food Studies, 2013, 2, .	0.8	8
126	Organosolv Treatment/Polyphenol Extraction from Olive Leaves (Olea europaea L.) Using Glycerol and Glycerol-Based Deep Eutectic Solvents: Effect on Metabolite Stability. Biomass, 2022, 2, 46-61.	2.8	8

#	Article	IF	CITATIONS
127	Characterisation of Polyphenol-Containing Extracts from Stachys mucronata and Evaluation of Their Antiradical Activity. Medicines (Basel, Switzerland), 2018, 5, 14.	1.4	7
128	Hydroglycerolic Solvent and Ultrasonication Pretreatment: A Green Blend for High-Efficiency Extraction of Salvia fruticosa Polyphenols. Sustainability, 2020, 12, 4840.	3.2	7
129	Fortification of chocolate using <i>Moringa oleifera</i> extract encapsulated in microemulsions. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 38.	1.4	6
130	Appraisal of the combined effect of time and temperature on the total polyphenol yield in batch stirred-tank extraction of medicinal and aromatic plants: The extraction efficiency factor. Journal of Applied Research on Medicinal and Aromatic Plants, 2021, 25, 100340.	1.5	6
131	Implementation of kinetics and response surface methodology reveals contrasting effects of catechin and chlorogenic acid on the development of browning in wine model systems containing either ascorbic acid or sulphite. European Food Research and Technology, 2017, 243, 565-574.	3.3	5
132	Kinetics and modeling of L-cysteine effect on the Cu(II)-induced oxidation of quercetin. Chemical Engineering Communications, 2020, 207, 139-152.	2.6	5
133	Empirical Kinetic Modelling and Mechanisms of Quercetin Thermal Degradation in Aqueous Model Systems: Effect of pH and Addition of Antioxidants. Applied Sciences (Switzerland), 2021, 11, 2579.	2.5	5
134	The effect of chlorogenic acid, catechin and SO2on browning development in white wine model solutions. Journal of the Institute of Brewing, 2013, 119, 309-313.	2.3	4
135	Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid. Processes, 2014, 2, 901-911.	2.8	4
136	Recovery and applications of enzymes from food wastes. , 2015, , 361-379.		4
137	High Performance Liquid Chromatography Studies on Free Radical Oxidation of Flavonols. , 2000, , 249-251.		4
138	Removal of Olive Mill Wastewater Phenolics with the Use of a Polyphenol Oxidase Homogenate from Potato Peel Waste. Journal of Waste Management, 2013, 2013, 1-7.	0.5	3
139	The effect of 2-hydroxypropyl β-cyclodextrin on the stability of polyphenolic compounds from Moringa oleifera Lam leaf extracts in a natural low-transition temperature mixture. Nova Biotechnologica Et Chimica, 2018, 17, 29-37.	0.1	3
140	Mulching Effect on Quantitative and Qualitative Characteristics of Yield in Sweet Potatoes. Horticulturae, 2022, 8, 271.	2.8	3
141	Polyphenols in Hellenic wines: creating composition tables as a tool for epidemiological studies. Journal of Wine Research, 2003, 14, 103-114.	1.5	2
142	BROWNING DEVELOPMENT IN WINE‣IKE LIQUID MODEL MATRICES: DEPENDENCE ON PHENOLIC, FE(III) AND SO ₂ CONCENTRATIONS. Journal of Food Process Engineering, 2010, 33, 934-945.	2.9	2
143	Factorial design optimisation of hydrocaffeic acid removal from an aqueous matrix by the use of a crude potato polyphenol oxidase. Biocatalysis and Agricultural Biotechnology, 2013, 2, 305-310.	3.1	2
144	EFFECT OF SIDE-CHAIN STRUCTURE ON THE OXIDIZABILITY OF <i>O</i> -DIPHENOL ACIDS BY A CRUDE POTATO PEEL POLYPHENOL OXIDASE. Chemical Engineering Communications, 2015, 202, 1-5.	2.6	2

#	Article	IF	CITATIONS
145	Effect of Methyl β-cyclodextrin on Radical Scavenging Kinetics of Olive Leaf Extracts and Interactions with Ascorbic Acid. ChemEngineering, 2017, 1, 6.	2.4	2
146	Empirical Kinetic Modelling of the Effect of l-Ascorbic Acid on the Cu(II)-Induced Oxidation of Quercetin. ChemEngineering, 2018, 2, 46.	2.4	2
147	Extractor dimensions affect optimization of laboratory-scale batch solid-liquid extraction of polyphenols from plant material: potato peels as a case study. Chemical Engineering Communications, 2021, 208, 1618-1629.	2.6	2
148	Recovery and applications of enzymes from food wastes. , 2021, , 313-325.		1
149	Editorial "High-Performance Green Extraction of Natural Productsâ€: Applied Sciences (Switzerland), 2020, 10, 7672.	2.5	0