List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4943564/publications.pdf Version: 2024-02-01

YVAN DEVALLY

#	Article	IF	CITATIONS
1	Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease. Circulation: Cardiovascular Genetics, 2010, 3, 499-506.	5.1	683
2	Long Noncoding RNAs in Patients With Acute Myocardial Infarction. Circulation Research, 2014, 115, 668-677.	4.5	441
3	Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Research in Cardiology, 2018, 113, 39.	5.9	311
4	Long noncoding RNAs in cardiac development and ageing. Nature Reviews Cardiology, 2015, 12, 415-425.	13.7	296
5	Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33°C and 36°C. Journal of the American College of Cardiology, 2015, 65, 2104-2114.	2.8	248
6	Use of Circulating MicroRNAs to Diagnose Acute Myocardial Infarction. Clinical Chemistry, 2012, 58, 559-567.	3.2	239
7	Myocardial Infarction-Associated Circular RNA Predicting Left Ventricular Dysfunction. Journal of the American College of Cardiology, 2016, 68, 1247-1248.	2.8	188
8	Circular <scp>RNAs</scp> in heart failure. European Journal of Heart Failure, 2017, 19, 701-709.	7.1	168
9	MicroRNA-150. Circulation: Cardiovascular Genetics, 2013, 6, 290-298.	5.1	137
10	Regulatory RNAs in Heart Failure. Circulation, 2020, 141, 313-328.	1.6	133
11	Diagnostic and prognostic value of circulating micro <scp>RNA</scp> s in patients with acute chest pain. Journal of Internal Medicine, 2015, 277, 260-271.	6.0	127
12	Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6098-6103.	7.1	126
13	Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovascular Research, 2019, 115, 1117-1130.	3.8	125
14	The circular RNA MICRA for risk stratification after myocardial infarction. IJC Heart and Vasculature, 2017, 17, 33-36.	1.1	106
15	Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics, 2014, 15, 460.	2.8	103
16	Noncoding RNAs in acute kidney injury. Kidney International, 2018, 94, 870-881.	5.2	103
17	A Panel of 4 microRNAs Facilitates the Prediction of Left Ventricular Contractility after Acute Myocardial Infarction. PLoS ONE, 2013, 8, e70644.	2.5	98
18	The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. Molecular Therapy - Nucleic Acids, 2017, 8, 494-507.	5.1	96

#	Article	IF	CITATIONS
19	Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis, 2017, 266, 176-181.	0.8	94
20	miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine?. Trends in Molecular Medicine, 2014, 20, 716-725.	6.7	90
21	IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Research in Cardiology, 2021, 116, 52.	5.9	73
22	Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Scientific Reports, 2011, 1, 52.	3.3	71
23	Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Research in Cardiology, 2020, 115, 23.	5.9	70
24	Noncoding RNAs in Hypertension. Hypertension, 2019, 74, 477-492.	2.7	68
25	Improvement of Donor Myocardial Function after Treatment of Autonomic Storm During Brain Death. Transplantation, 2006, 82, 1031-1036.	1.0	67
26	Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 ŰC or 36 ŰC. Resuscitation, 2016, 98, 1-8.	3.0	67
27	Modeling Serum Level of S100β and Bispectral Index to Predict Outcome After Cardiac Arrest. Journal of the American College of Cardiology, 2013, 62, 851-858.	2.8	66
28	Circulating microRNAs and Outcome in Patients with Acute Heart Failure. PLoS ONE, 2015, 10, e0142237.	2.5	65
29	Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33°C and 36°C. Critical Care, 2017, 21, 153.	5.8	64
30	Long Noncoding RNAs and Cardiac Disease. Antioxidants and Redox Signaling, 2018, 29, 880-901.	5.4	64
31	Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. International Journal of Molecular Sciences, 2020, 21, 700.	4.1	63
32	Adenosine Inhibits Matrix Metalloproteinase-9 Secretion By Neutrophils. Circulation Research, 2006, 99, 590-597.	4.5	62
33	C-reactive protein induces pro- and anti-inflammatory effects, including activation of the liver X receptor α, on human monocytes. Thrombosis and Haemostasis, 2008, 99, 558-569.	3.4	58
34	Lipopolysaccharide-Induced Increase of Prostaglandin E2 Is Mediated by Inducible Nitric Oxide Synthase Activation of the Constitutive Cyclooxygenase and Induction of Membrane-Associated Prostaglandin E Synthase. Journal of Immunology, 2001, 167, 3962-3971.	0.8	55
35	Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochemical and Biophysical Research Communications, 2010, 392, 351-356.	2.1	55
36	Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest – A TTM-Trial Substudy. PLoS ONE, 2017, 12, e0168894.	2.5	55

#	Article	IF	CITATIONS
37	Proteomic analysis of plasma samples from patients with acute myocardial infarction identifies haptoglobin as a potential prognostic biomarker. Journal of Proteomics, 2011, 75, 229-236.	2.4	50
38	Association of Circulating MicroRNA-124-3p Levels With Outcomes After Out-of-Hospital Cardiac Arrest. JAMA Cardiology, 2016, 1, 305.	6.1	50
39	p21-activated Protein Kinase 4 (PAK4) Interacts with the Keratinocyte Growth Factor Receptor and Participates in Keratinocyte Growth Factor-mediated Inhibition of Oxidant-induced Cell Death. Journal of Biological Chemistry, 2003, 278, 10374-10380.	3.4	44
40	Adenosine Stimulates the Migration of Human Endothelial Progenitor Cells. Role ofCXCR4 and MicroRNA-150. PLoS ONE, 2013, 8, e54135.	2.5	42
41	Adenosine A ₁ receptor activation attenuates cardiac hypertrophy and fibrosis in response to î± ₁ â€adrenoceptor stimulation <i>in vivo</i> . British Journal of Pharmacology, 2016, 173, 88-102.	5.4	40
42	Transcriptome of blood cells as a reservoir of cardiovascular biomarkers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 209-216.	4.1	39
43	MicroRNA-16 affects key functions of human endothelial progenitor cells. Journal of Leukocyte Biology, 2013, 93, 645-655.	3.3	38
44	Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H345-H359.	3.2	38
45	Circulating microRNAs after cardiac arrest*. Critical Care Medicine, 2012, 40, 3209-3214.	0.9	37
46	Peripheral Blood RNA Levels of <i>QSOX1</i> and <i>PLBD1</i> Are New Independent Predictors of Left Ventricular Dysfunction After Acute Myocardial Infarction. Circulation Genomic and Precision Medicine, 2019, 12, e002656.	3.6	37
47	Integrated protein network and microarray analysis to identify potential biomarkers after myocardial infarction. Functional and Integrative Genomics, 2010, 10, 329-337.	3.5	36
48	Circular RNAs in the cardiovascular system. Non-coding RNA Research, 2018, 3, 1-11.	4.6	36
49	Bispectral Index to Predict Neurological Outcome Early After Cardiac Arrest. Resuscitation, 2014, 85, 1674-1680.	3.0	35
50	Consequences of labetalol administration on myocardial beta adrenergic receptors in the brain dead pig. Annals of Transplantation, 2000, 5, 54-60.	0.9	34
51	Computational biology for cardiovascular biomarker discovery. Briefings in Bioinformatics, 2009, 10, 367-377.	6.5	33
52	Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. International Journal of Cardiology, 2013, 168, 4548-4550.	1.7	33
53	Noncoding RNAs in age-related cardiovascular diseases. Ageing Research Reviews, 2022, 77, 101610.	10.9	33
54	Enhancement of the inducible NO synthase activation by retinoic acid is mimicked by RARα agonist in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E525-E535.	3.5	32

#	Article	IF	CITATIONS
55	Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network. BMC Systems Biology, 2010, 4, 60.	3.0	32
56	Transforming growth factor Î ² receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction. BMC Medical Genomics, 2011, 4, 83.	1.5	32
57	Systems-Based Approaches to Cardiovascular Biomarker Discovery. Circulation: Cardiovascular Genetics, 2012, 5, 360-367.	5.1	32
58	Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovascular Research, 2008, 80, 246-254.	3.8	31
59	Retinoic acid and host-pathogen interactions: effects on inducible nitric oxide synthase in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1045-E1053.	3.5	30
60	Evidence of Functional Myocardial Ischemia Associated With Myocardial Dysfunction in Brain-Dead Pigs. Circulation, 2001, 104, I-197-I-201.	1.6	30
61	MicroRNAs: new biomarkers and therapeutic targets after cardiac arrest?. Critical Care, 2015, 19, 54.	5.8	30
62	Incremental Value of Circulating MiR-122-5p to Predict Outcome after Out of Hospital Cardiac Arrest. Theranostics, 2017, 7, 2555-2564.	10.0	30
63	MicroRNA 150-5p Improves Risk Classification for Mortality within 90 Days after Acute Ischemic Stroke. Journal of Stroke, 2017, 19, 323-332.	3.2	30
64	Retinoic acid amplifies the host immune response to LPS through increased T lymphocytes number and LPS binding protein expression. Molecular and Cellular Endocrinology, 2005, 245, 67-76.	3.2	29
65	Retinoic Acid Attenuates Inducible Nitric Oxide Synthase (NOS2) Activation in Cultured Rat Cardiac Myocytes and Microvascular Endothelial Cells. Journal of Molecular and Cellular Cardiology, 2001, 33, 933-945.	1.9	27
66	MicroRNAs in Patients on Chronic Hemodialysis (MINOS Study). Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 619-623.	4.5	27
67	Monocyte chemotactic protein 3 is a homing factor for circulating angiogenic cells. Cardiovascular Research, 2012, 94, 519-525.	3.8	27
68	Adenosine stimulates angiogenesis by up-regulating production of thrombospondin-1 by macrophages. Journal of Leukocyte Biology, 2015, 97, 9-18.	3.3	26
69	Low Levels of Vascular Endothelial Growth Factor B Predict Left Ventricular Remodeling After Acute Myocardial Infarction. Journal of Cardiac Failure, 2012, 18, 330-337.	1.7	25
70	Consequences of brain death on coronary blood flow and myocardial metabolism. Transplantation Proceedings, 1998, 30, 2840-2841.	0.6	24
71	Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system. Clinical Science, 2018, 132, 925-942.	4.3	24
72	Assessment of Procalcitonin to Predict Outcome in Hypothermia-Treated Patients after Cardiac Arrest. Critical Care Research and Practice, 2011, 2011, 1-7.	1.1	23

#	Article	IF	CITATIONS
73	Information encoded in a network of inflammation proteins predicts clinical outcome after myocardial infarction. BMC Medical Genomics, 2011, 4, 59.	1.5	22
74	Epigenetics in Ascending Thoracic Aortic Aneurysm and Dissection. Aorta, 2018, 06, 001-012.	0.5	22
75	Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice. PLoS ONE, 2012, 7, e38197.	2.5	22
76	MicroRNA profiling of human intermediate monocytes. Immunobiology, 2017, 222, 587-596.	1.9	21
77	Consequences of Inspired Oxygen Fraction Manipulation on Myocardial Oxygen Pressure, Adenosine and Lactate Concentrations: A Combined Myocardial Microdialysis and Sensitive Oxygen Electrode Study in Pigs. Journal of Molecular and Cellular Cardiology, 2000, 32, 493-504.	1.9	20
78	Ribosomal S6 Kinase as a Mediator of Keratinocyte Growth Factor-induced Activation of Akt in Epithelial Cells. Molecular Biology of the Cell, 2004, 15, 3106-3113.	2.1	20
79	INCREASE IN MYOCARDIAL INTERSTITIAL ADENOSINE AND NET LACTATE PRODUCTION IN BRAIN-DEAD PIGS. Transplantation, 1998, 66, 1278-1284.	1.0	20
80	Integrative Pathway-Centric Modeling of Ventricular Dysfunction after Myocardial Infarction. PLoS ONE, 2010, 5, e9661.	2.5	20
81	MiR-574-5p: A Circulating Marker of Thoracic Aortic Aneurysm. International Journal of Molecular Sciences, 2019, 20, 3924.	4.1	19
82	Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 6513.	4.1	19
83	Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129. Cardiovascular Research, 2022, 118, 3183-3197.	3.8	18
84	High-sensitivity troponin-T as a prognostic marker after out-of-hospital cardiac arrest – A targeted temperature management (TTM) trial substudy. Resuscitation, 2016, 107, 156-161.	3.0	17
85	Late heartbeat-evoked potentials are associated with survival after cardiac arrest. Resuscitation, 2018, 126, 7-13.	3.0	17
86	Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 2021, 117, 1823-1840.	3.8	17
87	Retinoic Acid and Lipopolysaccharide Act Synergistically to Increase Prostanoid Concentrations in Rats In Vivo. Journal of Nutrition, 2001, 131, 2628-2635.	2.9	16
88	A 3-gene panel improves the prediction of left ventricular dysfunction after acute myocardial infarction. International Journal of Cardiology, 2018, 254, 28-35.	1.7	16
89	Regulation of microRNAs in coronary atherosclerotic plaque. Epigenomics, 2019, 11, 1387-1397.	2.1	16
90	Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. Journal of Translational Medicine, 2020, 18, 408.	4.4	16

#	Article	IF	CITATIONS
91	Dissecting the transcriptome in cardiovascular disease. Cardiovascular Research, 2022, 118, 1004-1019.	3.8	16
92	Adenosine modifies the balance between membrane and soluble forms of Flt-1. Journal of Leukocyte Biology, 2011, 90, 199-204.	3.3	15
93	Usefulness of Serum B-Type Natriuretic Peptide Levels in Comatose Patients Resuscitated from Out-of-Hospital Cardiac Arrest to Predict Outcome. American Journal of Cardiology, 2016, 118, 998-1005.	1.6	15
94	A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 247-258.	4.1	15
95	Circulating levels of <scp>microRNA</scp> 423â€5p are associated with 90Âday mortality in cardiogenic shock. ESC Heart Failure, 2019, 6, 98-102.	3.1	15
96	N6-Methyladenine in Eukaryotic DNA: Tissue Distribution, Early Embryo Development, and Neuronal Toxicity. Frontiers in Genetics, 2021, 12, 657171.	2.3	15
97	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	2.6	14
98	Copeptin as a marker of outcome after cardiac arrest: a sub-study of the TTM trial. Critical Care, 2020, 24, 185.	5.8	14
99	Effects of Adenosine on Lymphangiogenesis. PLoS ONE, 2014, 9, e92715.	2.5	14
100	Protective effects of labetalol on myocardial contractile function in brain-dead pigs. Transplantation Proceedings, 1998, 30, 2842-2843.	0.6	13
101	Transcriptional networks characterize ventricular dysfunction after myocardial infarction: A proof-of-concept investigation. Journal of Biomedical Informatics, 2010, 43, 812-819.	4.3	13
102	Use of Coronary Ultrasound Imaging to Evaluate Ventricular Function in Adult Zebrafish. Zebrafish, 2016, 13, 477-480.	1.1	13
103	Circulating Levels of miR-574-5p Are Associated with Neurological Outcome after Cardiac Arrest in Women: A Target Temperature Management (TTM) Trial Substudy. Disease Markers, 2019, 2019, 1-10.	1.3	13
104	Adenosine Reduces Cell Surface Expression of Toll-Like Receptor 4 and Inflammation in Response to Lipopolysaccharide and Matrix Products. Journal of Cardiovascular Translational Research, 2011, 4, 790-800.	2.4	12
105	Prognostic transcriptional association networks: a new supervised approach based on regression trees. Bioinformatics, 2011, 27, 252-258.	4.1	12
106	Identification of Candidate Long Noncoding RNAs Associated with Left Ventricular Hypertrophy. Clinical and Translational Science, 2015, 8, 100-106.	3.1	12
107	Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. International Journal of Molecular Sciences, 2020, 21, 4890.	4.1	12
108	Call to action for the cardiovascular side of COVID-19. European Heart Journal, 2020, 41, 1796-1797.	2.2	12

#	Article	IF	CITATIONS
109	Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. European Heart Journal, 2021, 42, 4881-4883.	2.2	12
110	Biological response of human aortic endothelial cells exposed to acellular hemoglobin solutions developed as potential blood substitutes. Life Sciences, 2003, 72, 1143-1157.	4.3	11
111	Challenges and Standards in Reporting Diagnostic and Prognostic Biomarker Studies. Clinical and Translational Science, 2009, 2, 156-161.	3.1	11
112	Identification of potential targets in biological signalling systems through network perturbation analysis. BioSystems, 2010, 100, 55-64.	2.0	11
113	Door-to-Balloon Time and Mortality. New England Journal of Medicine, 2014, 370, 178-182.	27.0	11
114	Atrial Structural Remodeling Gene Variants in Patients with Atrial Fibrillation. BioMed Research International, 2018, 2018, 1-12.	1.9	11
115	Association of miR-21-5p, miR-122-5p, and miR-320a-3p with 90-Day Mortality in Cardiogenic Shock. International Journal of Molecular Sciences, 2020, 21, 7925.	4.1	11
116	Increased miR-142 Levels in Plasma and Atherosclerotic Plaques from Peripheral Artery Disease Patients with Post-Surgery Cardiovascular Events. International Journal of Molecular Sciences, 2020, 21, 9600.	4.1	11
117	Cyclin dependent kinase inhibitor 1 C is a female-specific marker of left ventricular function after acute myocardial infarction. International Journal of Cardiology, 2019, 274, 319-325.	1.7	10
118	Circulating microRNAs to predict heart failure after acute myocardial infarction in women. Clinical Biochemistry, 2019, 70, 1-7.	1.9	10
119	Regulation of microRNAs in high-fat diet induced hyperlipidemic hamsters. Scientific Reports, 2020, 10, 20549.	3.3	10
120	High-performance liquid chromatographic analysis of muscular interstitial arginine and norepinephrine kinetics. Biomedical Applications, 2000, 745, 279-286.	1.7	9
121	Gene Expression Profile of Blood Cells for the Prediction of Delayed Cerebral Ischemia after Intracranial Aneurysm Rupture: A Pilot Study in Humans. Cerebrovascular Diseases, 2013, 36, 236-242.	1.7	9
122	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	1.9	9
123	Endogenous Heparin Interferes with Quantification of MicroRNAs by RT-qPCR. Clinical Chemistry, 2018, 64, 863-865.	3.2	8
124	The association between plasma miR-122-5p release pattern at admission and all-cause mortality or shock after out-of-hospital cardiac arrest. Biomarkers, 2019, 24, 29-35.	1.9	8
125	A role for m6A RNA methylation in heart failure development?. European Journal of Heart Failure, 2020, 22, 67-69.	7.1	8
126	Role of MicroRNAs in Endothelial Progenitor Cells: Implication for Cardiac Repair. Journal of Stem Cells, 2014, 9, 107-15.	1.0	8

#	Article	IF	CITATIONS
127	Methodological considerations for circulating long noncoding RNA quantification. Trends in Molecular Medicine, 2022, 28, 616-618.	6.7	8
128	Predictive integration of gene functional similarity and co-expression defines treatment response of endothelial progenitor cells. BMC Systems Biology, 2011, 5, 46.	3.0	7
129	Transcriptomics Research to Improve Cardiovascular Healthcare. European Heart Journal, 2020, 41, 3296-3298.	2.2	7
130	CDR132L: another brick in the wall towards the use of miRNAs to treat cardiovascular disease. European Heart Journal, 2021, 42, 202-204.	2.2	7
131	Acipimox-enhanced 18F-fluorodeoxyglucose positron emission tomography for characterizing and predicting early remodeling in the rat infarct model. International Journal of Cardiovascular Imaging, 2012, 28, 1407-1415.	1.5	6
132	Prognostic MicroRNAs After AMI. Circulation Research, 2013, 113, e46-7.	4.5	6
133	Cardioprotective effects of adenosine within the border and remote areas of myocardial infarction. EJNMMI Research, 2013, 3, 65.	2.5	6
134	Whole transcriptome microarrays identify long non-coding RNAs associated with cardiac hypertrophy. Genomics Data, 2015, 5, 68-71.	1.3	6
135	Epigenetics in non-classical monocytes support their pro-inflammatory gene expression. Immunobiology, 2020, 225, 151958.	1.9	6
136	Regulation of endothelial progenitor cell function by micrornas. Minerva Cardioangiologica, 2013, 61, 591-604.	1.2	6
137	Prediction of Adverse Cardiovascular Events of Noncardiovascular Drugs through Drugâ€Target Interaction Networks. Clinical and Translational Science, 2012, 5, 111-111.	3.1	5
138	What's new in prognostication after cardiac arrest: microRNAs?. Intensive Care Medicine, 2018, 44, 897-899.	8.2	5
139	RNAs in Brain and Heart Diseases. International Journal of Molecular Sciences, 2020, 21, 3717.	4.1	5
140	Joining European Scientific Forces to Face Pandemics. Trends in Microbiology, 2021, 29, 92-97.	7.7	5
141	Which future for circulating microRNAs as biomarkers of acute myocardial infarction?. Annals of Translational Medicine, 2016, 4, 440-440.	1.7	5
142	An optimized protocol for microarray validation by quantitative PCR using amplified amino allyl labeled RNA. BMC Genomics, 2010, 11, 542.	2.8	4
143	Reprint of: MicroRNA profiling of human intermediate monocytes. Immunobiology, 2017, 222, 831-840.	1.9	4
144	Hypoxia inhibits lymphatic thoracic duct formation in zebrafish. Biochemical and Biophysical Research Communications, 2017, 482, 1129-1134.	2.1	4

#	Article	IF	CITATIONS
145	Restoration of cardiac function after anaemia-induced heart failure in zebrafish. Journal of Molecular and Cellular Cardiology, 2018, 121, 223-232.	1.9	4
146	Circulating Levels of Brain-Enriched MicroRNAs Correlate with Neuron Specific Enolase after Cardiac Arrest—A Substudy of the Target Temperature Management Trial. International Journal of Molecular Sciences, 2020, 21, 4353.	4.1	4
147	The Long Noncoding RNA Landscape of Cardiac Regeneration in Zebrafish. Canadian Journal of Cardiology, 2021, 37, 484-492.	1.7	4
148	Proof-of-principle investigation of an algorithmic model of adenosine-mediated angiogenesis. Theoretical Biology and Medical Modelling, 2011, 8, 7.	2.1	3
149	Cardiomyocyte-Specific Cell-Free DNA as a Heart Failure Biomarker?. Canadian Journal of Cardiology, 2020, 36, 807-808.	1.7	3
150	Response to Letter Regarding Article, "Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease― Circulation: Cardiovascular Genetics, 2011, 4, .	5.1	2
151	Non-Coding RNAs to Aid in Neurological Prognosis after Cardiac Arrest. Non-coding RNA, 2018, 4, 42.	2.6	2
152	Non-coding RNAs and stem cells: the dream team for neural regeneration in Parkinson's disease?. Neural Regeneration Research, 2021, 16, 2017.	3.0	2
153	MicroRNAs as biomarkers in the brain–heart axis?. European Heart Journal: Acute Cardiovascular Care, 0, , .	1.0	2
154	Playing Hide and Seek with Adenosine Receptors. Clinical and Translational Science, 2008, 1, 133-135.	3.1	1
155	P67Long non-coding RNAs in the infarcted heart. Cardiovascular Research, 2014, 103, S11.1-S11.	3.8	1
156	Unity is strength — A panel of 4 microRNAs decreases cardiomyocyte hypertrophy. International Journal of Cardiology, 2015, 182, 62-64.	1.7	1
157	A010 Interference with Toll-Like Receptor 4 pathway mediates the anti-inflammatory effects of adenosine. Archives of Cardiovascular Diseases, 2009, 102, S9-S10.	1.6	0
158	P70Circulating microRNAs and outcome in patients with acute heart failure. Cardiovascular Research, 2014, 103, S11.4-S11.	3.8	0
159	P63Long non-coding RNAs and cardiac hypertrophy. Cardiovascular Research, 2014, 103, S10.4-S10.	3.8	0
160	Daniel R Wagner: An appreciation. European Heart Journal, 2017, 38, 2928-2929.	2.2	0
161	Long noncoding RNAs and circular RNAs as heart failure biomarkers. , 2021, , 303-326.		0
162	Conclusions and perspectives: The present and future of epigenetics in cardiovascular disease. , 2021, , 459-461.		0

#	Article	IF	CITATIONS
163	473 Adenosine stimulates matrix metalloproteinase-9 secretion by THP-1-derived macrophages. European Journal of Heart Failure, Supplement, 2007, 6, 102-102.	0.0	0
164	Long-term survival after a massive left ventricular infarction evidenced by FDG-PET and leaving intact only the septal wall. International Journal of Clinical and Experimental Medicine, 2013, 6, 84-5.	1.3	0