
Marco Rito-Palomares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4943242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a simple and flexible enzymeâ€based platform for the colorimetric detection of multiple biomarkers in nonâ€conventional biofluids. Journal of Chemical Technology and Biotechnology, 2022, 97, 1959-1965.	1.6	1
2	Purification of xylanase from Aspergillus niger NRRL3 extract by an integrated strategy based on aqueous two-phase systems followed by ion exchange chromatography. Separation and Purification Technology, 2021, 255, 117699.	3.9	11
3	Economic analysis of the production and recovery of green fluorescent protein using ATPS-based bioprocesses. Separation and Purification Technology, 2021, 254, 117595.	3.9	16
4	Influence of tie line length and volume ratio on the partition behavior of peripheral blood and conjugated CD34 antibody in polymer-polymer aqueous two-phase systems. Separation and Purification Technology, 2021, 257, 117830.	3.9	7
5	Alternative acetone–water separation process through the application of aqueous twoâ€phase systems. Journal of Chemical Technology and Biotechnology, 2021, 96, 578-582.	1.6	3
6	Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Critical Reviews in Biotechnology, 2021, 41, 1081-1095.	5.1	15
7	Stem cell culture media enriched with plantâ€derived compounds: Cell proliferation enhancement. Journal of Chemical Technology and Biotechnology, 2021, 96, 2426-2435.	1.6	2
8	Cover Image, Volume 96, Issue 9. Journal of Chemical Technology and Biotechnology, 2021, 96, i.	1.6	0
9	Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 717326.	2.0	19
10	Aqueous Two-Phase Systems for Cleanup and Recovery of Enzymes from Plants and Plant-Derived Extracts. Methods in Molecular Biology, 2021, 2178, 65-79.	0.4	1
11	Evaluation of the Immune Response of a Candidate Phage-Based Vaccine against Rhipicephalus microplus (Cattle Tick). Pharmaceutics, 2021, 13, 2018.	2.0	2
12	Enzymatic Methods for Salivary Biomarkers Detection: Overview and Current Challenges. Molecules, 2021, 26, 7026.	1.7	9
13	Characterization and optimization of immunoaffinity aqueous twoâ€phase systems with PEGylated CD133/2â€biotin antibody in route to stem cell separation. Journal of Chemical Technology and Biotechnology, 2020, 95, 123-131.	1.6	3
14	Cellâ€based aqueous twoâ€phase systems for therapeutics. Journal of Chemical Technology and Biotechnology, 2020, 95, 8-10.	1.6	8
15	Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines, 2020, 8, 504.	2.1	46
16	Aqueous two-phase extraction of phenolic compounds from Sedum dendroideum with antioxidant activity and anti-proliferative properties against breast cancer cells. Separation and Purification Technology, 2020, 251, 117341.	3.9	16
17	Economic evaluation of M13 bacteriophage production at large cale for therapeutic applications using aqueous Twoâ€Phase systems. Journal of Chemical Technology and Biotechnology, 2020, 95, 2822-2833.	1.6	11
18	Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus). Food and Bioproducts Processing, 2020, 121, 178-185.	1.8	17

#	Article	IF	CITATIONS
19	Ribonuclease A modification with poly[<i>N</i> â€{2â€hydroxypropyl)methacrylamide] copolymers: new route of synthesis and purification. Journal of Chemical Technology and Biotechnology, 2020, 95, 1321-1328.	1.6	2
20	Cover Image, Volume 95, Issue 5. Journal of Chemical Technology and Biotechnology, 2020, 95, i.	1.6	0
21	Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 222.	2.0	97
22	Recent advances in antibody-based monolith chromatography for therapeutic applications. , 2020, , 105-116.		2
23	Aqueous Twoâ€Phase Systems at Large Scale: Challenges and Opportunities. Biotechnology Journal, 2019, 14, e1800117.	1.8	57
24	Strategies based on aqueous two-phase systems for the separation of laccase from protease produced by Pleurotus ostreatus. Fluid Phase Equilibria, 2019, 502, 112281.	1.4	7
25	Economic evaluation of the development of a phage therapy product for the control of <i>Salmonella</i> in poultry. Biotechnology Progress, 2019, 35, e2852.	1.3	27
26	Continuous aqueous two-phase extraction of microalgal C-phycocyanin using a coiled flow inverter. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107554.	1.8	22
27	Ex vivo Manufactured Neutrophils for Treatment of Neutropenia—A Process Economic Evaluation. Frontiers in Medicine, 2019, 6, 21.	1.2	14
28	Development and Characterization of PEGylated Chromatographic Monoliths as a Novel Platform for the Separation of PEGylated RNase a Isomers. Advances in Polymer Technology, 2019, 2019, 1-10.	0.8	2
29	Thermo-separating polymer-based aqueous two-phase systems for the recovery of PEGylated lysozyme species. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1105, 120-128.	1.2	9
30	Aqueous two-phase systems for the recovery and purification of phage therapy products: Recovery of salmonella bacteriophage I•San23 as a case study. Separation and Purification Technology, 2019, 211, 322-329.	3.9	12
31	Economic evaluation of the primary recovery of tetracycline with traditional and novel aqueous two-phase systems. Separation and Purification Technology, 2018, 203, 178-184.	3.9	17
32	Step by Step with ELISA: Mechanism of Operation, Crucial Elements, Different Protocols, and Insights on Immobilization and Detection of Various Biomolecular Entities. SpringerBriefs in Applied Sciences and Technology, 2018, , 31-56.	0.2	1
33	General Overviews on Applications of ELISA. SpringerBriefs in Applied Sciences and Technology, 2018, , 19-29.	0.2	4
34	Evaluation of the Detection Results Obtained from ELISA. SpringerBriefs in Applied Sciences and Technology, 2018, , 57-66.	0.2	0
35	Advantages, Disadvantages and Modifications of Conventional ELISA. SpringerBriefs in Applied Sciences and Technology, 2018, , 67-115.	0.2	50
36	Simulation of monoâ€₽EGylated lysozyme separation in heparin affinity chromatography using a general rate model. Journal of Chemical Technology and Biotechnology, 2018, 93, 1980-1987.	1.6	2

#	Article	IF	CITATIONS
37	Novel aspects and future trends in the use of aqueous twoâ€phase systems as a bioengineering tool. Journal of Chemical Technology and Biotechnology, 2018, 93, 1836-1844.	1.6	24
38	Practical experiences from the benchâ€scale implementation of a bioprocess for fucoxanthin production. Journal of Chemical Technology and Biotechnology, 2018, 93, 2033-2039.	1.6	7
39	Factorial and Economic Evaluation of an Aqueous Two-Phase Partitioning Pilot Plant for Invertase Recovery From Spent Brewery Yeast. Frontiers in Chemistry, 2018, 6, 454.	1.8	6
40	Improved recovery of bacteriophage M13 using an ATPSâ€based bioprocess. Biotechnology Progress, 2018, 34, 1177-1184.	1.3	2
41	Is Bioseparation still the limiting step in bioprocess development?. Journal of Chemical Technology and Biotechnology, 2018, 93, 1813-1814.	1.6	Ο
42	Monte Carlo economic analysis of Baker's yeast invertase purification using two―and threeâ€phase partitioning. Journal of Chemical Technology and Biotechnology, 2018, 93, 2511-2517.	1.6	7
43	Monolithic chromatography: insights and practical perspectives. Journal of Chemical Technology and Biotechnology, 2017, 92, 9-13.	1.6	17
44	Partial purification of a polygalacturonase from a new <i>Aspergillus sojae</i> mutant and its application in grape mash maceration. International Journal of Food Science and Technology, 2017, 52, 834-842.	1.3	2
45	Optimized purification of monoâ€PEGylated lysozyme by heparin affinity chromatography using response surface methodology. Journal of Chemical Technology and Biotechnology, 2017, 92, 2554-2562.	1.6	13
46	Recovery of PEGylated and native lysozyme using an <i>in situ</i> aqueous twoâ€phase system directly from the PEGylation reaction. Journal of Chemical Technology and Biotechnology, 2017, 92, 2519-2526.	1.6	9
47	Refolding of laccase from Trametes versicolor using aqueous two phase systems: Effect of different additives. Journal of Chromatography A, 2017, 1507, 25-31.	1.8	8
48	In Focus: Biotechnology and chemical technology for biorefineries and biofuel production. Journal of Chemical Technology and Biotechnology, 2017, 92, 897-898.	1.6	3
49	Characterization of Aqueous Two-Phase Systems and Their Potential New Applications. Food Engineering Series, 2017, , 19-33.	0.3	1
50	Cover Image, Volume 92, Issue 1. Journal of Chemical Technology and Biotechnology, 2017, 92, i-i.	1.6	0
51	Recovery and primary purification of bacteriophage M13 using aqueous twoâ€phase systems. Journal of Chemical Technology and Biotechnology, 2017, 92, 2808-2816.	1.6	20
52	Integration of cell harvest with affinity-enhanced purification of monoclonal antibodies using aqueous two-phase systems with a dual tag ligand. Separation and Purification Technology, 2017, 173, 129-134.	3.9	26
53	General Concepts and Definitions of Aqueous Two-Phase Systems. Food Engineering Series, 2017, , 1-18.	0.3	7
54	Affinity ATPS Strategies for the Selective Fractionation of Biomolecules. Food Engineering Series, 2017, , 97-121.	0.3	1

4

#	Article	IF	CITATIONS
55	Process Economics: Evaluation of theÂPotential of ATPS as aÂFeasible Alternative to Traditional Fractionation Techniques. Food Engineering Series, 2017, , 161-178.	0.3	1
56	Perspectives and Future Trends in Aqueous Two-Phase System-Based Technology. Food Engineering Series, 2017, , 179-185.	0.3	0
57	PEGylated protein separation using different hydrophobic interaction supports: Conventional and monolithic supports. Biotechnology Progress, 2016, 32, 702-707.	1.3	13
58	Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamondâ€shaped insulating posts. Electrophoresis, 2016, 37, 519-528.	1.3	17
59	Intensified fractionation of brewery yeast waste for the recovery of invertase using aqueous twoâ€phase systems. Biotechnology and Applied Biochemistry, 2016, 63, 886-894.	1.4	10
60	An integrated practical implementation of continuous aqueous twoâ€phase systems for the recovery of human lgC: From the microdevice to a multistage benchâ€scale mixerâ€settler device. Biotechnology Journal, 2016, 11, 708-716.	1.8	21
61	Flotation Immunoassay: Masking the Signal from Free Reporters in Sandwich Immunoassays. Scientific Reports, 2016, 6, 24297.	1.6	11
62	Modelling of electrokinetic phenomena for capture of PEGylated ribonuclease A in a microdevice with insulating structures. Biomicrofluidics, 2016, 10, 033106.	1.2	21
63	Covalent immobilization of antibodies for the preparation of immunoaffinity chromatographic supports. Separation Science and Technology, 2016, 51, 1736-1743.	1.3	6
64	Synthesis of adsorbents with dendronic structures for protein hydrophobic interaction chromatography. Journal of Chromatography A, 2016, 1443, 191-200.	1.8	10
65	Economic analysis of pilotâ€scale production of Bâ€phycoerythrin. Biotechnology Progress, 2016, 32, 1472-1479.	1.3	17
66	A microdevice assisted approach for the preparation, characterization and selection of continuous aqueous two-phase systems: from micro to bench-scale. Lab on A Chip, 2016, 16, 2662-2672.	3.1	15
67	<i>Pleurotus ostreatus</i> laccase recovery from residual compost using aqueous two-phase systems. Journal of Chemical Technology and Biotechnology, 2016, 91, 2235-2242.	1.6	17
68	Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. Journal of Applied Phycology, 2016, 28, 849-860.	1.5	91
69	Economic analysis of uricase production under uncertainty: Contrast of chromatographic purification and aqueous two-phase extraction (with and without PEG recycle). Biotechnology Progress, 2016, 32, 126-133.	1.3	26
70	Elimination of contaminants from cell preparations using aqueous two-phase partitioning. Separation and Purification Technology, 2016, 158, 103-107.	3.9	14
71	Impact of aqueous twoâ€phase system design parameters upon the <i>in situ</i> refolding and recovery of invertase. Journal of Chemical Technology and Biotechnology, 2015, 90, 1765-1772.	1.6	18
72	Purification and Formulation of Xanthophyll for Pharmaceutical Use: Current Strategies and Future Trends. ChemBioEng Reviews, 2015, 2, 393-405.	2.6	3

#	Article	IF	CITATIONS
73	Insights on the downstream purification of fucoxanthin, a microalgal carotenoid, from an aqueous two-phase system stream exploiting ultrafiltration. Journal of Applied Phycology, 2015, 27, 1517-1523.	1.5	24
74	Economic analysis of royalactin production under uncertainty: Evaluating the effect of parameter optimization. Biotechnology Progress, 2015, 31, 744-749.	1.3	18
75	Application of affinity aqueous twoâ€phase systems for the fractionation of CD133 ⁺ stem cells from human umbilical cord blood. Journal of Molecular Recognition, 2015, 28, 142-147.	1.1	15
76	Aldehyde PEGylation of laccase from <i>Trametes versicolor</i> in route to increase its stability: effect on enzymatic activity. Journal of Molecular Recognition, 2015, 28, 173-179.	1.1	19
77	Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Separation and Purification Technology, 2015, 141, 263-268.	3.9	28
78	A systems engineering perspective on process integration in industrial biotechnology. Journal of Chemical Technology and Biotechnology, 2015, 90, 349-355.	1.6	60
79	A novel pectinâ€degrading enzyme complex from <i>Aspergillus sojae</i> <scp>ATCC</scp> 20235 mutants. Journal of the Science of Food and Agriculture, 2015, 95, 1554-1561.	1.7	9
80	Toward improving selectivity in affinity chromatography with <scp>PEG</scp> ylated affinity ligands: The performance of <scp>PEG</scp> ylated protein A. Biotechnology Progress, 2014, 30, 1364-1379.	1.3	11
81	Partition behavior of fucoxanthin in ethanolâ€potassium phosphate twoâ€phase systems. Journal of Chemical Technology and Biotechnology, 2014, 89, 1637-1645.	1.6	33
82	Aqueous Two-Phase System Strategies for the Recovery of Proteins from Plants. Methods in Molecular Biology, 2014, 1129, 89-100.	0.4	4
83	Spermine Sepharose as a clustered-charge anion exchange adsorbent. Journal of Chromatography A, 2014, 1324, 135-140.	1.8	5
84	Partition behavior of CD133 ⁺ stem cells from human umbilical cord blood in aqueous twoâ€phase systems: In route to establish novel stem cell primary recovery strategies. Biotechnology Progress, 2014, 30, 700-707.	1.3	14
85	Potential application of aqueous twoâ€phase systems and threeâ€phase partitioning for the recovery of superoxide dismutase from a clarified homogenate of <scp><i>K</i></scp> <i>luyveromyces marxianus</i> . Biotechnology Progress, 2014, 30, 1326-1334.	1.3	15
86	Application of Aqueous Two-Phase Systems for the Recovery of Bioactive Low-Molecular Weight Compounds. Separation Science and Technology, 2014, 49, 1872-1882.	1.3	21
87	Microretroreflector-Sedimentation Immunoassays for Pathogen Detection. Analytical Chemistry, 2014, 86, 9029-9035.	3.2	11
88	A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags. Journal of Chromatography A, 2014, 1339, 26-33.	1.8	10
89	Separation of PEGylated variants of ribonuclease A and apo-α-lactalbumin via reversed phase chromatography. Journal of Chromatography A, 2014, 1360, 209-216.	1.8	12
90	Recovery of major royal jelly protein 1 expressed inPichia pastorisin aqueous two-phase systems. Journal of Chemical Technology and Biotechnology, 2014, 89, 941-947.	1.6	11

MARCO RITO-PALOMARES

#	Article	IF	CITATIONS
91	Aqueous two-phase systems strategies to establish novel bioprocesses for stem cells recovery. Critical Reviews in Biotechnology, 2014, 34, 318-327.	5.1	32
92	Continuous aqueous two-phase systems devices for the recovery of biological products. Food and Bioproducts Processing, 2014, 92, 101-112.	1.8	70
93	Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: Practical experiences. Process Biochemistry, 2013, 48, 738-745.	1.8	57
94	Proteome wide evaluation of the separation ability of hydrophobic interaction chromatography by fluorescent dye binding analysis. Journal of Molecular Recognition, 2013, 26, 618-626.	1.1	2
95	Practical nonâ€ehromatography strategies for the potential separation of <scp>PEGylated RNase</scp> AÂconjugates. Journal of Chemical Technology and Biotechnology, 2013, 88, 49-54.	1.6	8
96	Lowâ€abundant protein extraction from complex protein sample using a novel continuous aqueous twoâ€phase systems device. Journal of Separation Science, 2013, 36, 391-399.	1.3	20
97	Case Studies in the Application of Aqueous Two-Phase Processes for the Recovery of High Value Biological Products. ACS Symposium Series, 2013, , 33-50.	0.5	0
98	Effects of chemical modifications in the partition behavior of proteins in aqueous twoâ€phase systems: A case study with <scp>RNase</scp> A. Biotechnology Progress, 2013, 29, 378-385.	1.3	13
99	<scp>DNA</scp> based vaccines offer improved vaccination supply for the developing world. Journal of Chemical Technology and Biotechnology, 2013, 88, 979-982.	1.6	7
100	A novel process for the recovery of superoxide dismutase from yeast exploiting electroextraction coupled to direct sorption. Journal of Chemical Technology and Biotechnology, 2013, 88, 1498-1505.	1.6	4
101	Advances and trends in the design, analysis, and characterization of polymer–protein conjugates for "PEGylaided―bioprocesses. Analytical and Bioanalytical Chemistry, 2012, 403, 2225-2235.	1.9	38
102	Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems. Journal of Chromatography A, 2012, 1236, 7-15.	1.8	58
103	Hydrophobic interaction chromatography for purification of monoPEGylated RNase A. Journal of Chromatography A, 2012, 1242, 11-16.	1.8	37
104	Aqueous two-phase affinity partitioning systems: Current applications and trends. Journal of Chromatography A, 2012, 1244, 1-13.	1.8	132
105	PEGylation, detection and chromatographic purification of site-specific PEGylated CD133-Biotin antibody in route to stem cell separation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 893-894, 182-186.	1.2	19
106	Current strategies and challenges for the purification of stem cells. Journal of Chemical Technology and Biotechnology, 2012, 87, 2-10.	1.6	26
107	Aqueous Two-Phase Systems. , 2011, , 697-713.		37

108 Aqueous Two-Phase Systems. , 2011, , 773-789.

#	Article	IF	CITATIONS
109	Colorimetric protein quantification in aqueous two-phase systems. Process Biochemistry, 2011, 46, 413-417.	1.8	24
110	Application of an aqueous two-phase systems strategy for the potential recovery of a recombinant protein from alfalfa (Medicago sativa). Separation and Purification Technology, 2011, 77, 94-98.	3.9	55
111	Current advances in the non hromatographic fractionation and characterization of PEGylated proteins. Journal of Chemical Technology and Biotechnology, 2011, 86, 18-25.	1.6	27
112	Potential application of aqueous twoâ€phase systems for the fractionation of RNase A and α‣actalbumin from their PEGylated conjugates. Journal of Chemical Technology and Biotechnology, 2011, 86, 26-33.	1.6	35
113	Oxidation of Polycyclic Aromatic Hydrocarbons using Partially Purified Laccase from Residual Compost of <i>Agaricus bisporus</i> . Chemical Engineering and Technology, 2011, 34, 1368-1372.	0.9	9
114	Study of biomolecules partition coefficients on a novel continuous separator using polymer-salt aqueous two-phase systems. Separation and Purification Technology, 2011, 78, 69-75.	3.9	38
115	Quantification of RNase A and Its PEGylated Conjugates on Polymer-Salt Rich Environments Using UV Spectrophotometry. Analytical Letters, 2011, 44, 800-814.	1.0	9
116	Application of Aqueous Twoâ€Phase Systems for the Potential Extractive Fermentation of Cyanobacterial Products. Chemical Engineering and Technology, 2010, 33, 177-182.	0.9	36
117	Aqueous two-phase systems strategies for the recovery and characterization of biological products from plants. Journal of the Science of Food and Agriculture, 2010, 90, 1385-1392.	1.7	49
118	Potential of Aqueous Two-Phase Systems constructed on flexible devices: Human serum albumin as proof of concept. Process Biochemistry, 2010, 45, 1082-1087.	1.8	15
119	Coupled Application of Aqueous Two-Phase Partitioning and 2D-Electrophoresis for Characterization of Soybean Proteins. Separation Science and Technology, 2010, 45, 2210-2225.	1.3	9
120	Characterization of greenâ€ŧissue protein extract from alfalfa (<i>Medicago sativa</i>) exploiting a 3â€D technique. Journal of Separation Science, 2009, 32, 3223-3231.	1.3	26
121	Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochemistry, 2009, 44, 435-439.	1.8	62
122	Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Analytical and Bioanalytical Chemistry, 2009, 394, 293-302.	1.9	71
123	Separation of PEGylated from unmodified ribonuclease A using sepharose media. Separation and Purification Technology, 2009, 65, 105-109.	3.9	35
124	Processing of soybean (<i>Clycine max</i>) extracts in aqueous twoâ€phase systems as a first step for the potential recovery of recombinant proteins. Journal of Chemical Technology and Biotechnology, 2008, 83, 286-293.	1.6	23
125	Practical approach to protein recovery by countercurrent distribution in aqueous two-phase systems. Journal of Chemical Technology and Biotechnology, 2008, 83, 163-166.	1.6	7
126	Practical experiences from the development of aqueous twoâ€phase processes for the recovery of high value biological products. Journal of Chemical Technology and Biotechnology, 2008, 83, 133-142.	1.6	137

#	Article	IF	CITATIONS
127	Bioseparation: The limiting step in bioprocess development. Journal of Chemical Technology and Biotechnology, 2008, 83, 115-116.	1.6	6
128	Extraction and Purification of Bioproducts and Nanoparticles using Aqueous Twoâ€Phase Systems Strategies. Chemical Engineering and Technology, 2008, 31, 838-845.	0.9	117
129	Performance characterization of an insulatorâ€based dielectrophoretic microdevice. Electrophoresis, 2008, 29, 3115-3122.	1.3	66
130	Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. Journal of Chromatography A, 2008, 1206, 45-51.	1.8	118
131	Insulator Based Dielectrophoresis: Effects of Bulk Medium Properties. , 2007, , 177.		0
132	Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis, 2007, 28, 4521-4538.	1.3	182
133	Direct comparison between ion-exchange chromatography and aqueous two-phase processes for the partial purification of penicillin acylase produced by E. coli. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 835, 77-83.	1.2	65
134	Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systemsâ~†. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 842, 48-57.	1.2	88
135	Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentumâ ⁻ †. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 844, 39-44.	1.2	62
136	Improved recovery of B-phycoerythrin produced by the red microalgaPorphyridium cruentum. Journal of Chemical Technology and Biotechnology, 2006, 81, 989-996.	1.6	21
137	New aqueous two-phase systems based on poly(ethylene oxide sulfide) (PEOS) and potassium phosphate for the potential recovery of proteins. Journal of Chemical Technology and Biotechnology, 2006, 81, 997-1002.	1.6	7
138	Potential Aqueous Two-Phase Processes for the Primary Recovery of Colored Protein from Microbial Origin. Engineering in Life Sciences, 2005, 5, 259-266.	2.0	19
139	Practical application of aqueous two-phase partition to process development for the recovery of biological products. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 807, 3-11.	1.2	304
140	Recovery in aqueous two-phase systems of lutein produced by the green microalga Chlorella protothecoides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 807, 105-110.	1.2	55
141	Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 807, 33-38.	1.2	48
142	Bioprocess Intensification: A Radical New Process for Recovering Inclusion Body Protein. Food and Bioproducts Processing, 2002, 80, 45-50.	1.8	6
143	Aqueous two-phase systems for the recovery of a recombinant viral coat protein fromEscherichia coli. Journal of Chemical Technology and Biotechnology, 2002, 77, 1025-1029.	1.6	26
144	Production and biotransformation of 6-pentyl-α-pyrone by Trichoderma harzianum in two-phase culture systems. Applied Microbiology and Biotechnology, 2002, 58, 170-174.	1.7	20

#	Article	IF	CITATIONS
145	Process integration using aqueous two-phase partition for the recovery of intracellular proteins. Chemical Engineering Journal, 2002, 87, 313-319.	6.6	57
146	The potential application of aqueous two-phase systems for in situ recovery of 6-pentyl-â^ž-pyrone produced by Trichoderma harzianum. Enzyme and Microbial Technology, 2001, 28, 625-631.	1.6	29
147	Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery fromSpirulina maxima. Journal of Chemical Technology and Biotechnology, 2001, 76, 1273-1280.	1.6	148
148	Practical implementation of aqueous two-phase processes for protein recovery from yeast. Journal of Chemical Technology and Biotechnology, 2000, 75, 632-638.	1.6	30
149	Generic application of an aqueous two-phase process for protein recovery from animal blood. Process Biochemistry, 2000, 35, 665-673.	1.8	41
150	Kinetics of phase separation under different process and design parameters in aqueous two-phase systems. Biomedical Applications, 2000, 743, 195-201.	1.7	9
151	Aroma compounds recovery from mycelial cultures in aqueous two-phase processes. Biomedical Applications, 2000, 743, 403-408.	1.7	24
152	Effect of biological suspensions on the position of the binodal curve in aqueous two-phase systems. Biomedical Applications, 2000, 743, 5-12.	1.7	16
153	Studies on the physical and compositional changes in collapsing beer foam. Chemical Engineering Journal, 1999, 72, 83-89.	6.6	20
154	Aqueous two-phase fractionation of biological suspensions for protein recovery from bovine blood. Biotechnology Letters, 1998, 12, 711-714.	0.5	16
155	Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems. Biomedical Applications, 1998, 711, 81-90.	1.7	45
156	Impact of cell disruption and polymer recycling upon aqueous two-phase processes for protein recovery. Biomedical Applications, 1996, 680, 81-89.	1.7	35
157	Aqueous twoâ€phase systems in Latin America: perspective and future trends. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	3
158	Advances, current challenges, and future trends in bioseparation: perspective analysis of the papers published in JCTB. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	0