Nathaniel A Jeske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the Accuracy of Maxillary Positioning With Interim Splints Versus Patient-Specific Guides and Plates in Executing a Virtual Bimaxillary Surgical Plan. Journal of Oral and Maxillofacial Surgery, 2022, 80, 827-837.	1.2	10
2	Outcomes of total joint alloplastic reconstruction in TMJ ankylosis. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2022, 134, 135-142.	0.4	5
3	Raf kinase inhibitory protein reduces bradykinin receptor desensitization. Journal of Neurochemistry, 2022, , .	3.9	2
4	Sensitization of smallâ€diameter sensory neurons is controlled by TRPV1 and TRPA1 association. FASEB Journal, 2020, 34, 287-302.	0.5	39
5	GRK2 Dictates a Functional Switch of the Peripheral Mu-Opioid Receptor. ACS Chemical Neuroscience, 2020, 11, 4376-4386.	3.5	3
6	Dynamic Opioid Receptor Regulation in the Periphery. Molecular Pharmacology, 2019, 95, 463-467.	2.3	15
7	Serum response factor mediates nociceptor inflammatory pain plasticity. Pain Reports, 2018, 3, e658.	2.7	4
8	A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Scientific Reports, 2017, 7, 1842.	3.3	22
9	Identification of a signaling cascade that maintains constitutive δ-opioid receptor incompetence in peripheral sensory neurons. Journal of Biological Chemistry, 2017, 292, 8762-8772.	3.4	13
10	Repeat low-level blast exposure increases transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1) expression in the trigeminal ganglion. PLoS ONE, 2017, 12, e0182102.	2.5	7
11	GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity. Cell Reports, 2016, 16, 2686-2698.	6.4	27
12	A-kinase anchoring protein 79/150 coordinates metabotropic glutamate receptor sensitization of peripheral sensory neurons. Pain, 2015, 156, 2364-2372.	4.2	12
13	Persistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms. Journal of Neuroscience, 2015, 35, 8593-8603.	3.6	89
14	Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain. Neuron, 2015, 85, 833-846.	8.1	143
15	Peripheral Scaffolding and Signaling Pathways in Inflammatory Pain. Progress in Molecular Biology and Translational Science, 2015, 131, 31-52.	1.7	5
16	Divergence in Endothelin-1- and Bradykinin-Activated Store-Operated Calcium Entry in Afferent Sensory Neurons. ASN Neuro, 2015, 7, 175909141557871.	2.7	12
17	Activation of Mu Opioid Receptors Sensitizes Transient Receptor Potential Vanilloid Type 1 (TRPV1) via β-Arrestin-2-Mediated Cross-Talk. PLoS ONE, 2014, 9, e93688.	2.5	39
18	β-Arrestin-2-Biased Agonism of Delta Opioid Receptors Sensitizes Transient Receptor Potential Vanilloid Type 1 (TRPV1) in Primary Sensory Neurons. Molecular Pain, 2014, 10, 1744-8069-10-50.	2.1	20

NATHANIEL A JESKE

#	Article	IF	CITATIONS
19	Phosphorylation regulates TRPV1 association with \hat{I}^2 -arrestin-2. Biochemical Journal, 2013, 451, 101-109.	3.7	27
20	β-Arrestin-2 Desensitizes the Transient Receptor Potential Vanilloid 1 (TRPV1) Channel. Journal of Biological Chemistry, 2012, 287, 37552-37563.	3.4	41
21	Somatosensory scaffolding structures. Frontiers in Molecular Neuroscience, 2012, 5, 2.	2.9	8
22	Metallopeptidase inhibition potentiates bradykinin-induced hyperalgesia. Pain, 2011, 152, 1548-1554.	4.2	15
23	AKAP150-Mediated TRPV1 Sensitization is Disrupted by Calcium/Calmodulin. Molecular Pain, 2011, 7, 1744-8069-7-34.	2.1	17
24	A-Kinase Anchoring Protein 150 Mediates Transient Receptor Potential Family V Type 1 Sensitivity to Phosphatidylinositol-4,5-Bisphosphate. Journal of Neuroscience, 2011, 31, 8681-8688.	3.6	36
25	PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150. Biochemical Journal, 2010, 432, 549-556.	3.7	35
26	Contribution of TRPV1-TRPA1 Interaction to the Single Channel Properties of the TRPA1 Channel. Journal of Biological Chemistry, 2010, 285, 15167-15177.	3.4	171
27	A-kinase anchoring protein 150 controls protein kinase C-mediated phosphorylation and sensitization of TRPV1. Pain, 2009, 146, 301-307.	4.2	71
28	Roles of transient receptor potential channels in pain. Brain Research Reviews, 2009, 60, 2-23.	9.0	154
29	Fibronectin stimulates TRPV1 translocation in primary sensory neurons. Journal of Neurochemistry, 2009, 108, 591-600.	3.9	26
30	Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia. Trends in Pharmacological Sciences, 2009, 30, 79-84.	8.7	99
31	A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain, 2008, 138, 604-616.	4.2	108
32	Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18976-18981.	7.1	148
33	Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1â€directed internalization. Journal of Physiology, 2007, 583, 175-193.	2.9	236
34	Prolactin Modulates TRPV1 in Female Rat Trigeminal Sensory Neurons. Journal of Neuroscience, 2006, 26, 8126-8136.	3.6	120
35	Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia. Journal of Neurochemistry, 2006, 97, 13-21.	3.9	33
36	The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11393-11398.	7.1	142

NATHANIEL A JESKE

#	Article	IF	CITATIONS
37	Cannabinoid WIN 55,212-2 Regulates TRPV1 Phosphorylation in Sensory Neurons. Journal of Biological Chemistry, 2006, 281, 32879-32890.	3.4	127
38	Bradykinin-Induced Functional Competence and Trafficking of the Â-Opioid Receptor in Trigeminal Nociceptors. Journal of Neuroscience, 2005, 25, 8825-8832.	3.6	148
39	Metalloendopeptidase EC3.4.24.15 is constitutively released from the exofacial leaflet of lipid rafts in GT1-7 cells. Journal of Neurochemistry, 2004, 90, 819-828.	3.9	32
40	EP24.15 is associated with lipid rafts. Journal of Neuroscience Research, 2003, 74, 468-473.	2.9	16