Andreas Klamt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4942980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. The Journal of Physical Chemistry, 1995, 99, 2224-2235.	2.9	3,325
2	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	0.8	2,561
3	Refinement and Parametrization of COSMO-RS. Journal of Physical Chemistry A, 1998, 102, 5074-5085.	1.1	1,577
4	Fast solvent screening via quantum chemistry: COSMO-RS approach. AICHE Journal, 2002, 48, 369-385.	1.8	1,433
5	COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilibria, 2000, 172, 43-72.	1.4	1,002
6	Incorporation of solvent effects into density functional calculations of molecular energies and geometries. Journal of Chemical Physics, 1995, 103, 9312-9320.	1.2	776
7	Treatment of the outlying charge in continuum solvation models. Journal of Chemical Physics, 1996, 105, 9972-9981.	1.2	771
8	COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems. Physical Chemistry Chemical Physics, 2000, 2, 2187-2193.	1.3	632
9	Calculation of Solvent Shifts on Electronicg-Tensors with the Conductor-Like Screening Model (COSMO) and Its Self-Consistent Generalization to Real Solvents (Direct COSMO-RS). Journal of Physical Chemistry A, 2006, 110, 2235-2245.	1.1	573
10	The COSMO and COSMOâ€RS solvation models. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 699-709.	6.2	571
11	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
12	COSMO-RS: An Alternative to Simulation for Calculating Thermodynamic Properties of Liquid Mixtures. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 101-122.	3.3	445
13	Comment on the Correct Use of Continuum Solvent Models. Journal of Physical Chemistry A, 2010, 114, 13442-13444.	1.1	432
14	COSMO-RS as a tool for property prediction of IL mixtures—A review. Fluid Phase Equilibria, 2010, 294, 31-38.	1.4	368
15	A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. Journal of Chemical Theory and Computation, 2015, 11, 4220-4225.	2.3	274
16	First Principles Calculations of Aqueous pKaValues for Organic and Inorganic Acids Using COSMOâ^'RS Reveal an Inconsistency in the Slope of the pKaScale. Journal of Physical Chemistry A, 2003, 107, 9380-9386.	1.1	270
17	Calculation of UV/Vis Spectra in Solution. The Journal of Physical Chemistry, 1996, 100, 3349-3353.	2.9	248
18	Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. Journal of Computational Chemistry, 2002, 23, 275-281.	1.5	232

#	Article	IF	CITATIONS
19	Prediction of Infinite Dilution Activity Coefficients of Organic Compounds in Ionic Liquids Using COSMO-RS. Journal of Chemical & Engineering Data, 2003, 48, 475-479.	1.0	215
20	First principles implementation of solvent effects without outlying charge error. Journal of Chemical Physics, 1997, 106, 6622-6633.	1.2	213
21	The <scp>COSMO</scp> and <scp>COSMOâ€RS</scp> solvation models. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1338.	6.2	197
22	On the Performance of Continuum Solvation Methods. A Comment on "Universal Approaches to Solvation Modelingâ€. Accounts of Chemical Research, 2009, 42, 489-492.	7.6	171
23	Prediction of acidity in acetonitrile solution with COSMOâ€RS. Journal of Computational Chemistry, 2009, 30, 799-810.	1.5	168
24	Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation. Journal of Pharmaceutical Sciences, 2012, 101, 3687-3697.	1.6	150
25	Accurate prediction of basicity in aqueous solution with COSMO-RS. Journal of Computational Chemistry, 2006, 27, 11-19.	1.5	149
26	COSMOSPACE: Alternative to conventional activity-coefficient models. AICHE Journal, 2002, 48, 2332-2349.	1.8	136
27	COSMO-RS: a novel view to physiological solvation and partition questions. Journal of Computer-Aided Molecular Design, 2001, 15, 355-365.	1.3	125
28	A Comparison between the Two General Sets of Linear Free Energy Descriptors of Abraham and Klamt. Journal of Chemical Information and Computer Sciences, 2002, 42, 1320-1331.	2.8	122
29	COSMOmic: A Mechanistic Approach to the Calculation of Membraneâ [~] Water Partition Coefficients and Internal Distributions within Membranes and Micelles. Journal of Physical Chemistry B, 2008, 112, 12148-12157.	1.2	115
30	Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS. Fluid Phase Equilibria, 2003, 206, 223-235.	1.4	102
31	Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering. Journal of Pharmacy and Pharmacology, 2015, 67, 803-811.	1.2	102
32	Towards a first principles prediction of p <i>K</i> _a : COSMO-RS and the cluster-continuum approach. Molecular Physics, 2010, 108, 229-241.	0.8	87
33	COSMO-RS for aqueous solvation and interfaces. Fluid Phase Equilibria, 2016, 407, 152-158.	1.4	85
34	Reliable Quantum Chemical Prediction of the Localized/Delocalized Character of Organic Mixed-Valence Radical Anions. From Continuum Solvent Models to Direct-COSMO-RS. Journal of Chemical Theory and Computation, 2012, 8, 4189-4203.	2.3	83
35	Prediction of Phospholipid–Water Partition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMO <i>mic</i> . Journal of Physical Chemistry B, 2014, 118, 14833-14842.	1.2	80
36	Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids. Physical Chemistry Chemical Physics, 2007, 9, 4653.	1.3	79

#	Article	IF	CITATIONS
37	COSMOfrag:  A Novel Tool for High-Throughput ADME Property Prediction and Similarity Screening Based on Quantum Chemistry. Journal of Chemical Information and Modeling, 2005, 45, 1169-1177.	2.5	78
38	Prediction of the Free Energy of Hydration of a Challenging Set of Pesticide-Like Compounds. Journal of Physical Chemistry B, 2009, 113, 4508-4510.	1.2	70
39	Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere, 1996, 32, 717-726.	4.2	65
40	Calculation of Solvation Free Energies with DCOSMO-RS. Journal of Physical Chemistry A, 2015, 119, 5439-5445.	1.1	65
41	Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS. Industrial & Engineering Chemistry Research, 2014, 53, 11478-11487.	1.8	62
42	Ionic Liquids: Predictions of Physicochemical Properties with Experimental and/or DFT-Calculated LFER Parameters To Understand Molecular Interactions in Solution. Journal of Physical Chemistry B, 2011, 115, 6040-6050.	1.2	58
43	Prediction of vapor liquid equilibria using COSMOtherm. Fluid Phase Equilibria, 2004, 217, 53-57.	1.4	57
44	First-Principles Prediction of Liquid/Liquid Interfacial Tension. Journal of Chemical Theory and Computation, 2014, 10, 3401-3408.	2.3	56
45	Use of COSMO-RS for the prediction of adsorption equilibria. AICHE Journal, 2002, 48, 1093-1099.	1.8	55
46	Thermochemistry of Chlorobenzenes and Chlorophenols:Â Ambient Temperature Vapor Pressures and Enthalpies of Phase Transitions. Journal of Chemical & Engineering Data, 2007, 52, 499-510.	1.0	55
47	Prediction or partition coefficients and activity coefficients of two branched compounds using COSMOtherm. Fluid Phase Equilibria, 2009, 285, 15-18.	1.4	55
48	Prediction of Blood-Î'rain Partitioning and Human Serum Albumin Binding Based on COSMO-RS ΃-Moments. Journal of Chemical Information and Modeling, 2007, 47, 228-233.	2.5	54
49	Polarization charge densities provide a predictive quantification of hydrogen bond energies. Physical Chemistry Chemical Physics, 2012, 14, 955-963.	1.3	54
50	COSMO <i>quick</i> : A Novel Interface for Fast σ-Profile Composition and Its Application to COSMO-RS Solvent Screening Using Multiple Reference Solvents. Industrial & Engineering Chemistry Research, 2012, 51, 14303-14308.	1.8	50
51	Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set. Journal of Computer-Aided Molecular Design, 2016, 30, 959-967.	1.3	50
52	Solvent effects in electronically excited states using the continuum solvation model COSMO in combination with multireference configuration interaction with singles and doubles (MR-CISD). Theoretical Chemistry Accounts, 2004, 111, 78-89.	0.5	46
53	Solubility of sodium diclofenac in different solvents. Fluid Phase Equilibria, 2007, 261, 140-145.	1.4	43
54	Validation of the COSMO-RS Method:Â Six Binary Systems. Industrial & Engineering Chemistry Research, 2001, 40, 2371-2378.	1.8	42

#	Article	IF	CITATIONS
55	Predicting the Critical Micelle Concentrations of Aqueous Solutions of Ionic Liquids and Other Ionic Surfactants. Chemistry - A European Journal, 2009, 15, 8880-8885.	1.7	41
56	A refined cavity construction algorithm for the conductorâ€like screening model. Journal of Computational Chemistry, 2018, 39, 1648-1655.	1.5	41
57	Challenges in thermodynamics. Chemical Engineering and Processing: Process Intensification, 2004, 43, 221-238.	1.8	40
58	Vapor–liquid equilibrium prediction at high pressures using activity coefficients at infinite dilution from COSMO-type methods. Fluid Phase Equilibria, 2005, 231, 231-238.	1.4	40
59	Blind prediction test of free energies of hydration with COSMO-RS. Journal of Computer-Aided Molecular Design, 2010, 24, 357-360.	1.3	39
60	Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks. Applied Energy, 2017, 206, 887-899.	5.1	37
61	COSMO <i>sar3D</i> : Molecular Field Analysis Based on Local COSMO σ-Profiles. Journal of Chemical Information and Modeling, 2012, 52, 2157-2164.	2.5	36
62	Interpretation of experimental hydrogen-bond enthalpies and entropies from COSMO polarisation charge densities. Physical Chemistry Chemical Physics, 2013, 15, 7147.	1.3	36
63	Insight into Chemical Reactions from First-Principles Simulations:Â The Mechanism of the Gas-Phase Reaction of OH Radicals with Ketones. Journal of Physical Chemistry A, 1998, 102, 3614-3617.	1.1	35
64	Prediction of soil sorption coefficients with a conductorâ€like screening model for real solvents. Environmental Toxicology and Chemistry, 2002, 21, 2562-2566.	2.2	35
65	Probing carboxylate Cibbs transfer energies via liquid liquid transfer at triple phase boundary electrodes: ion-transfer voltammetry versus COSMO-RS predictions. Physical Chemistry Chemical Physics, 2008, 10, 3925.	1.3	34
66	Computational Screening of Drug Solvates. Pharmaceutical Research, 2016, 33, 2794-2804.	1.7	32
67	Quantum chemical insights into the dependence of porphyrin basicity on the meso-aryl substituents: thermodynamics, buckling, reaction sites and molecular flexibility. Physical Chemistry Chemical Physics, 2015, 17, 14096-14106.	1.3	31
68	COSMO-RS based predictions for the SAMPL6 logP challenge. Journal of Computer-Aided Molecular Design, 2020, 34, 385-392.	1.3	30
69	Quantitative theory of hydrogen diffusion in niobium and tantalum. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 108, 281-284.	0.9	29
70	Prediction, fine tuning, and temperature extrapolation of a vapor liquid equilibrium using COSMOtherm. Fluid Phase Equilibria, 2007, 260, 183-189.	1.4	28
71	COSMO <i>perm:</i> Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence. Journal of Physical Chemistry B, 2020, 124, 3343-3354.	1.2	26
72	COSMO-RS as a Predictive Tool for Lipophilicity. QSAR and Combinatorial Science, 2009, 28, 874-877.	1.5	25

#	Article	IF	CITATIONS
73	Prediction of halocarbon thermodynamics with COSMO-RS. Fluid Phase Equilibria, 2003, 210, 117-141.	1.4	24
74	High-Throughput Screening of Working Fluids for the Organic Rankine Cycle (ORC) Based on Conductor-like Screening Model for Realistic Solvation (COSMO-RS) and Thermodynamic Process Simulations. Industrial & Engineering Chemistry Research, 2017, 56, 788-798.	1.8	24
75	Prediction of Partition Coefficients of Environmental Toxins Using Computational Chemistry Methods. ACS Omega, 2019, 4, 13772-13781.	1.6	24
76	COSMOsim: Bioisosteric Similarity Based on COSMO-RS σ Profiles. Journal of Chemical Information and Modeling, 2006, 46, 1040-1053.	2.5	23
77	Vorhersage von Gaslöslichkeiten und Verteilungskoeffizienten aufgrund von Molekülorbitalrechnungen (COSMO) unter Berücksichtigung des Lösungsmitteleinflusses. Chemie-Ingenieur-Technik, 1995, 67, 476-479.	0.4	21
78	COSMO <i>sim3D</i> : 3D-Similarity and Alignment Based on COSMO Polarization Charge Densities. Journal of Chemical Information and Modeling, 2012, 52, 2149-2156.	2.5	21
79	Prediction of free energies of hydration with COSMO-RS on the SAMPL4 data set. Journal of Computer-Aided Molecular Design, 2014, 28, 169-173.	1.3	21
80	Cocrystal Ternary Phase Diagrams from Density Functional Theory and Solvation Thermodynamics. Crystal Growth and Design, 2018, 18, 5600-5608.	1.4	21
81	Use of Surface Charges from DFT Calculations To Predict Intestinal Absorption. Journal of Chemical Information and Modeling, 2005, 45, 1337-1342.	2.5	20
82	Consideration of dimerization for property prediction with COSMO-RS-DARE. Fluid Phase Equilibria, 2014, 382, 89-99.	1.4	20
83	Prediction of the temperature dependence of a polyether–water mixture using COSMOtherm. Fluid Phase Equilibria, 2011, 310, 7-10.	1.4	19
84	Comments on "A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Modelâ€ . Industrial & Engineering Chemistry Research, 2002, 41, 2330-2331.	1.8	17
85	Butadiene Purification Using Polar Solvents. Analysis of Solution Nonideality Using Data and Estimation Methods. Industrial & Engineering Chemistry Research, 2008, 47, 4996-5004.	1.8	17
86	Mechanistic skin penetration model by the COSMOperm method: Routes of permeation, vehicle effects and skin variations in the healthy and compromised skin. Computational Toxicology, 2019, 11, 50-64.	1.8	16
87	<i>Ab initio</i> prediction of structuring/mesoscale inhomogeneities in surfactant-free microemulsions and hydrogen-bonding-free microemulsions. Physical Chemistry Chemical Physics, 2019, 21, 8054-8066.	1.3	16
88	Some conclusions regarding the predictions of tautomeric equilibria in solution based on the SAMPL2 challenge. Journal of Computer-Aided Molecular Design, 2010, 24, 621-625.	1.3	15
89	COSMO <i>plex</i> : self-consistent simulation of self-organizing inhomogeneous systems based on COSMO-RS. Physical Chemistry Chemical Physics, 2019, 21, 9225-9238.	1.3	15
90	Tight-binding polarons. I. A new variational approach to the molecular-crystal model. Journal of Physics C: Solid State Physics, 1988, 21, 1953-1970.	1.5	14

#	Article	IF	CITATIONS
91	Predicting Flash Points of Pure Compounds and Mixtures with COSMO-RS. Industrial & Engineering Chemistry Research, 2015, 54, 12974-12980.	1.8	14
92	Prediction of free energies of hydration with COSMO-RS on the SAMPL3 data set. Journal of Computer-Aided Molecular Design, 2012, 26, 669-673.	1.3	12
93	Comments on "Performance of a Conductor-Like Screening Model for Real Solvents Model in Comparison to Classical Group Contribution Methods― Industrial & Engineering Chemistry Research, 2005, 44, 7042-7042.	1.8	8
94	Validation of the COSMO-RS electrostatics by Monte-Carlo simulations. Fluid Phase Equilibria, 2007, 261, 162-167.	1.4	6
95	Comment on "Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium― Industrial & Engineering Chemistry Research, 2012, 51, 13538-13540.	1.8	6
96	Comments on "Performance of COSMO-RS with Sigma Profiles from Different Model Chemistries― Industrial & Engineering Chemistry Research, 2008, 47, 987-988.	1.8	5
97	COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics. Computer Aided Chemical Engineering, 2018, 43, 9.	0.3	5
98	Comment on "A critical assessment on two predictive models of binary vapor–liquid equilibrium―by M. Neiman, H. Cheng, V. Parekh, B. Peterson and K. Klier, Phys. Chem. Chem. Phys., 2004,6, 3474. Physical Chemistry Chemical Physics, 2004, 6, 5081-5081.	1.3	4
99	On the theory of spin-lattice relaxation due to the hopping motion of light interstitials; the role of excited states. Journal of Physics Condensed Matter, 1992, 4, 3405-3428.	0.7	3
100	Comment on "Application of the COSMO-SAC-BP Solvation Model to Predictions of Normal Boiling Temperatures for Environmentally Significant Substances― Industrial & Engineering Chemistry Research, 2006, 45, 3766-3766.	1.8	3
101	Comment on "Comparison of Predictivities of Logâ€ <i>P</i> Calculation Models Based on Experimental Data for 134 Simple Organic Compounds―by Y. Sakuratani, K. Kasai, Y. Noguchi, and J. Yamada, <i>QSAR Comb. Sci.</i> 2007, <i>26</i> , 109–116. QSAR and Combinatorial Science, 2008, 27, 232-233.	1.5	3
102	Comment on "Refinement of COSMOâ^'SAC and the Applications― Industrial & Engineering Chemistry Research, 2008, 47, 1351-1352.	1.8	3
103	COSMOsim3D for drug-similarity, alignment, and molecular field analysis. Journal of Cheminformatics, 2012, 4, .	2.8	3
104	New Molecular Descriptors to Identify Surfactants and Solubilizers from Electron Density Distributions. Journal of Surfactants and Detergents, 2019, 22, 1039-1045.	1.0	3
105	The Jahn-Teller effect of excited states of hydrogen in metals. Journal of Physics F: Metal Physics, 1987, 17, 47-57.	1.6	2
106	Comment on "Towards the development of theoretically correct liquid activity coefficient modelsâ€. Journal of Chemical Thermodynamics, 2009, 41, 1312-1313.	1.0	2
107	Comment on "An Improvement to COSMO-SAC for Predicting Thermodynamic Properties― Industrial & Engineering Chemistry Research, 2014, 53, 8935-8935.	1.8	2
108	Comment on "Phase Behavior of Ternary Mixtures of Water–Vanillin–Ethanol for Vanillin Extraction via Dissipative Particle Dynamics― Journal of Chemical & Engineering Data, 2015, 60, 3437-3438.	1.0	1

#	Article	IF	CITATIONS
109	Molecular Similarity Searching Using COSMO Screening Charges (COSMO/3PP). Lecture Notes in Computer Science, 2005, , 175-185.	1.0	1
110	Tight-binding polarons. II. The interstitial-polaron model. Journal of Physics Condensed Matter, 1989, 1, 3897-3910.	0.7	0
111	3D-QSAR reloaded: Open3DALIGN meets COSMOsar3D. Journal of Cheminformatics, 2013, 5, .	2.8	0
112	Comment on "Computational studies on organic reactivity in ionic liquids―by C. Chiappe and C. S. Pomelli, Phys. Chem. Chem. Phys., 2013, 15, 412. Physical Chemistry Chemical Physics, 2013, 15, 11139.	1.3	0