
Rajesh K Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4942934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide. Photochemistry and Photobiology, 2022, 98, 150-159.	2.5	10
2	Highly Efficient Flower‣ike Graphene Quantum Dotsâ€Based Fuschin Photocatalyst for Selective NAD(P)H Cofactor Regeneration Under Solar Light Irradiation. Photochemistry and Photobiology, 2022, 98, 412-420.	2.5	9
3	Synthesis of highly efficient selenium oxide hybridized g-C3N4 photocatalyst for NADH/NADPH regeneration to facilitate solar-to-chemical reaction. Main Group Chemistry, 2022, 21, 1077-1089.	0.8	6
4	Rational design of a graphitic carbon nitride catalytic–biocatalytic system as a photocatalytic platform for solar fine chemical production from CO ₂ . Reaction Chemistry and Engineering, 2022, 7, 1566-1572.	3.7	20
5	Greener Oneâ€step Synthesis of Novel In Situ Seleniumâ€doped Framework Photocatalyst by Melem and Perylene Dianhydride for Enhanced Solar Fuel Production from CO ₂ . Photochemistry and Photobiology, 2022, 98, 998-1007.	2.5	2
6	Ultra-efficient synthesis of bamboo-shape porphyrin framework for photocatalytic CO2 reduction and consecutive C-S/C-N bonds formation. Journal of CO2 Utilization, 2022, 59, 101968.	6.8	7
7	In Situ Prepared NRCPFs as Highly Active Photo Platforms for in Situ Bond Formation Between Aryldiazonium Salts and Heteroarenes. Photochemistry and Photobiology, 2022, 98, 748-753.	2.5	11
8	Chitosanâ€based fluorescein isothiocyanate film as a highly efficient <scp>metalâ€free</scp> photocatalyst for <scp>solarâ€lightâ€mediated</scp> direct <scp>CH</scp> arylation. International Journal of Energy Research, 2021, 45, 5964-5973.	4.5	4
9	Fabrication of Graphitic Carbon <scp>Nitrideâ€Based</scp> Film: An Emerged Highly Efficient Catalyst for Direct C—H Arylation under Solar Light. Chinese Journal of Chemistry, 2021, 39, 633-639.	4.9	17
10	Eosin-Y and sulfur-codoped g-C ₃ N ₄ composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catalysis Science and Technology, 2021, 11, 6401-6410.	4.1	29
11	Anthraceneâ€based <scp> g ₃ N ₄ </scp> photocatalyst for regeneration of <scp>NAD</scp> (P)H and sulfide oxidation based on Zâ€scheme nature. International Journal of Energy Research, 2021, 45, 13117-13129.	4.5	17
12	In Situ Prepared Solar Lightâ€Driven Flexible Actuated Carbon Clothâ€Based Nanorod Photocatalyst for Selective Radical–Radical Coupling to Vinyl Sulfides. Photochemistry and Photobiology, 2021, 97, 955-962.	2.5	4
13	Solar light <scp>active flexible</scp> activated carbon clothâ€based photocatalyst for <scp>Markovnikovâ€selective radicalâ€radical crossâ€coupling</scp> of <i>S</i> <scp>â€nucleophiles</scp> to terminal alkyne and liquefied petroleum gas sensing. Journal of the Chinese Chemical Society, 2021, 68. 1435-1444.	1.4	5
14	Flexible covalent porphyrin framework film: An emerged platform for photocatalytic C H bond activation. Applied Surface Science, 2021, 544, 148938.	6.1	18
15	Oneâ€Pot Highly Efficient Synthesis of Nâ€Enrich Graphene Quantum Dots as a Photocatalytic Platform for NAD+/NADP+ Reduction. Photochemistry and Photobiology, 2021, 97, 1498-1506.	2.5	9
16	Fluorescein dye derivative: Synthesis, characterization, quantum chemical and promising antimicrobial activity studies. Journal of Heterocyclic Chemistry, 2021, 58, 2381-2389.	2.6	2
17	Experimental and theoretical observations of alkylated EOSIN based "turn-on―superoxide sensor as well as its anti-microbial study. Main Group Chemistry, 2021, 20, 623-632.	0.8	4
18	Self-assembled protein/carbon nitride/sulfur hydrogel photocatalyst for highly selective solar chemical production. Materials Letters, 2020, 259, 126752.	2.6	18

Rajesh K Yadav

#	Article	IF	CITATIONS
19	Self-assembled carbon nitride/cobalt (III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101, 107648.	3.9	36
20	Highly efficient perylene-based polymer photocatalyst/biocatalyst systems for l-glutamate production under solar light. Bulletin of Materials Science, 2020, 43, 1.	1.7	11
21	Efficient photocatalytic synthesis of l-glutamate using a self-assembled carbon nitride/sulfur/porphyrin catalyst. Environmental Chemistry Letters, 2020, 18, 1389-1395.	16.2	15
22	In-situ Prepared 2D Covalent Organic Framework as a Photocatalyst in the Photocatalytic-Biocatalytic Attached System for Highly Selective L-Glutamate Production under Solar Light. Advanced Materials Letters, 2020, 11, 1-4.	0.6	3
23	Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nature Communications, 2019, 10, 1873.	12.8	93
24	A functionalized ruthenium-graphene nanosheet photocatalyst for highly regioselective visible light driven C–H arylation of imidazo-pyrimidines. Sustainable Energy and Fuels, 2019, 3, 3324-3328.	4.9	5
25	Inâ€Situ Prepared Flexible 3D Polymer Film Photocatalyst for Highly Selective Solar Fuel Production from CO ₂ . ChemCatChem, 2018, 10, 2024-2029.	3.7	13
26	Facile One-Pot Two-Step Synthesis of Novel in Situ Selenium-Doped Carbon Nitride Nanosheet Photocatalysts for Highly Enhanced Solar Fuel Production from CO ₂ . ACS Applied Nano Materials, 2018, 1, 47-54.	5.0	62
27	Highly Improved Solar Energy Harvesting for Fuel Production from CO2 by a Newly Designed Graphene Film Photocatalyst. Scientific Reports, 2018, 8, 16741.	3.3	21
28	Graphene oxide modified cobalt metallated porphyrin photocatalyst for conversion of formic acid from carbon dioxide. Journal of CO2 Utilization, 2018, 27, 107-114.	6.8	37
29	Inâ€Situ Prepared Flexible 3D Polymer Film Photocatalyst for Highly Selective Solar Fuel Production from CO2. ChemCatChem, 2018, 10, 1928-1928.	3.7	1
30	New Carbon Nanodots‧ilica Hybrid Photocatalyst for Highly Selective Solar Fuel Production from CO ₂ . ChemCatChem, 2017, 9, 3153-3159.	3.7	28
31	A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO ₂ . Journal of Materials Chemistry A, 2016, 4, 9413-9418.	10.3	148
32	Functionalized Graphene Quantum Dots as Efficient Visible‣ight Photocatalysts for Selective Solar Fuel Production from CO ₂ . ChemCatChem, 2016, 8, 3389-3393.	3.7	49
33	Highly Selective Solar-Driven Methanol from CO ₂ by a Photocatalyst/Biocatalyst Integrated System. Journal of the American Chemical Society, 2014, 136, 16728-16731.	13.7	194
34	A solar light-driven, eco-friendly protocol for highly enantioselective synthesis of chiral alcohols via photocatalytic/biocatalytic cascades. Green Chemistry, 2014, 16, 4389.	9.0	59
35	Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2. Journal of Materials Chemistry A, 2014, 2, 5068.	10.3	99
36	A Photocatalyst/Enzyme Couple That Uses Solar Energy in the Asymmetric Reduction of Acetophenones. Angewandte Chemie - International Edition, 2012, 51, 11624-11628.	13.8	49

Rajesh K Yadav

#	Article	IF	CITATIONS
37	A Photocatalyst–Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO ₂ . Journal of the American Chemical Society, 2012, 134, 11455-11461.	13.7	341
38	Preparation, structural elucidation, molecular weight determination, and molecular recognition of first―and secondâ€ŧier dendrimer molecules. Journal of Applied Polymer Science, 2008, 110, 2601-2614.	2.6	3
39	Viscometric studies of molecular interactions of nicotine in aqueous and aqueous ethanol at 298.15, 303.15 and 308.15 K. Physics and Chemistry of Liquids, 2007, 45, 215-220.	1.2	3
40	Thermodynamic studies of molar volume, pair and triplet interactions at increasing side-chain length of α-amino acids in aqueous potassium chloride solutions at different concentration and 310.15ÅK. Journal of Molecular Liquids, 2007, 135, 188-191.	4.9	13
41	Enhancing Disinfection of Contaminated Natural Water Using 40 kHz Frequency Cavitational Reactor. Environmental Engineering Science, 0, , .	1.6	1
42	Photocatalytic activity of ultrathin 2DPNs for enzymatically generating formic acid from CO ₂ and C–S/C–N bond formation. Sustainable Energy and Fuels, 0, , .	4.9	1