
Oleg Ovchinnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/494229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear absorption enhancement of Methylene Blue in the presence of Au/SiO2 core/shell nanoparticles. Dyes and Pigments, 2022, 197, 109829.	3.7	11
2	Role of photoinduced destruction of gold nanorods in the formation of nonlinear optical response. Optik, 2022, 250, 168352.	2.9	6
3	Control the shallow trap states concentration during the formation of luminescent Ag2S and Ag2S/SiO2 core/shell quantum dots. Journal of Luminescence, 2022, 243, 118616.	3.1	7
4	IR luminescence of plexcitonic structures based on Ag ₂ S/L-Cys quantum dots and Au nanorods. Optics Express, 2022, 30, 4668.	3.4	4
5	The structural and luminescence properties of plexcitonic structures based on Ag ₂ S/ <scp>I</scp> -Cys quantum dots and Au nanorods. RSC Advances, 2022, 12, 6525-6532.	3.6	6
6	Investigation of Nonlinear Optical Processes in Mercury Sulfide Quantum Dots. Nanomaterials, 2022, 12, 1264.	4.1	3
7	Optical nonlinearities of mercury telluride quantum dots measured by nanosecond pulses. Photonics and Nanostructures - Fundamentals and Applications, 2022, , 101025.	2.0	1
8	Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. Journal of Luminescence, 2022, 248, 118874.	3.1	4
9	Photoexcitation dynamics in hybrid associates of Ag2S quantum dots with methylene blue. Journal of Luminescence, 2021, 232, 117794.	3.1	6
10	Structural and optical properties of Ag2S/SiO2 core/shell quantum dots. Journal of Luminescence, 2021, 231, 117805.	3.1	10
11	Nonlinear optical properties of Ag nanoparticles with and without silicon dioxide shell. Optical Materials, 2021, 111, 110583.	3.6	5
12	Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles. Kondensirovannye Sredy Mezhfaznye Granitsy, 2021, 23, .	0.3	2
13	Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles. Kondensirovannye Sredy Mezhfaznye Granitsy, 2021, 23, 25-31.	0.3	4
14	Nonlinear Optical Characterization of InP@ZnS Core-Shell Colloidal Quantum Dots Using 532 nm, 10 ns Pulses. Nanomaterials, 2021, 11, 1366.	4.1	3
15	Synthesis and low-order optical nonlinearities of colloidal HgSe quantum dots in the visible and near infrared ranges. Optics Express, 2021, 29, 16710.	3.4	4
16	Colloidal Ag ₂ S/SiO ₂ core/shell quantum dots with IR luminescence. Optical Materials Express, 2021, 11, 89.	3.0	17
17	Nonlinear optical properties of hybrid associates of Ag2S quantum dots with erythrosine molecules. Optik, 2020, 200, 163391.	2.9	11
18	Femtosecond dynamics of photoexcitation in hybrid systems of CdS quantum dots with methylene blue. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113898.	2.7	8

#	Article	IF	CITATIONS
19	Luminescence of colloidal Ag <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e315" altimg="si63.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> S/ZnS core/shell quantum dots conned with thiophycolic acid lowrnal of luminescence, 2020, 220, 11,7008	3.1	13
20	dots capped with thios/vcolic acid, Journal of Luminescence, 2020, 220, 117008. IR luminescence mechanism in colloidal Ag <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e710" altimg="si18.svg"> <mml:msub> <mml:mrow /> <mml:mrow> <mml:mn>2 </mml:mn></mml:mrow> </mml:mrow </mml:msub> S quantum dots. Journal of Luminescence, 2020, 227, 117526.</mml:math 	3.1	22
21	Luminescence, 2020, 227, 117326. Luminescence of hybrid nanostructures based on colloidal Ag2S/TGA quantum dots and Indocyanine Green molecules. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	0
22	Ag2S QDs/Si Heterostructure-Based Ultrasensitive SWIR Range Detector. Nanomaterials, 2020, 10, 861.	4.1	10
23	Enhancement of nonlinear optical response of methylene blue and azure a during association with colloidal CdS quantum dots. Optik, 2020, 218, 165122.	2.9	8
24	Effect of thioglycolic acid molecules on luminescence properties of \$\$hbox {Ag}_2\$\$S quantum dots. Optical and Quantum Electronics, 2020, 52, 1.	3.3	16
25	Excitation Transfer in Hybrid Nanostructures of Colloidal Ag2S/TGA Quantum Dots and Indocyanine Green J-Aggregates. Journal of Fluorescence, 2020, 30, 581-589.	2.5	2
26	Thioglycolic Acid FTIR Spectra on Ag2S Quantum Dots Interfaces. Materials, 2020, 13, 909.	2.9	37
27	Nonlinear Refraction in Colloidal Ag2S Quantum Dots. Bulletin of the Lebedev Physics Institute, 2019, 46, 210-214.	0.6	9
28	High-order harmonic generation using quasi-phase matching and two-color pump in the plasmas containing molecular and alloyed metal sulfide quantum dots. Journal of Applied Physics, 2019, 126, 193103.	2.5	19
29	Reverse photodegradation of infrared luminescence of colloidal Ag2S quantum dots. Journal of Luminescence, 2019, 207, 626-632.	3.1	16
30	Luminescence decay characteristics of CdS quantum dots doped with europium ions. Journal of Luminescence, 2019, 213, 459-468.	3.1	4
31	Room Temperature Silicon Detector for IR Range Coated with Ag 2 S Quantum Dots. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900187.	2.4	11
32	Nonlinear Optical Properties of Hybrid Associates of Azure A Molecules with Zn0.5Cd0.5S Colloidal Quantum Dots. Bulletin of the Lebedev Physics Institute, 2019, 46, 93-96.	0.6	11
33	Resonant Nonradiative Energy Transfer in Hybrid Associates of Thionine Molecules and Ag2S Colloidal Quantum Dots with Different Luminescence Mechanisms. Optics and Spectroscopy (English) Tj ETQq1	1 @.7 8431	14 s gBT /Over
34	Control of direction of nonradiative resonance energy transfer in hybrid associates of colloidal Ag2S/TGA QDs with thionine molecules. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	4
35	Photostimulated control of luminescence quantum yield for colloidal Ag ₂ S/2-MPA quantum dots. RSC Advances, 2019, 9, 37312-37320.	3.6	11
36	Luminescence and nonlinear optical properties of colloidal Ag2S quantum dots. Journal of Luminescence, 2019, 208, 193-200.	3.1	33

#	Article	IF	CITATIONS
37	APPLICATION OF LUMINESCENCE AND ABSORPTION SPECTRA TO CONTROL THE FORMATION OF A HETEROJUNCTION IN NANOSTRUCTURED RUTILE FILMS SENSITIZED BY CDS QUANTUM DOTS. Kondensirovannye Sredy Mezhfaznye Granitsy, 2019, 21, 399-405.	0.3	0
38	Nonlinear absorption of some thiazine, xanthene, and carbocyanine dyes. Optik, 2018, 157, 113-124.	2.9	4
39	Thermostimulated luminescence of colloidal Ag2S quantum dots. Journal of Luminescence, 2018, 198, 357-363.	3.1	27
40	Control over the Size Effect in the Spectroscopic Properties of Zn x Cd1 – xS Colloidal Quantum Dots. Inorganic Materials, 2018, 54, 413-420.	0.8	8
41	Peculiarities of the nonlinear optical absorption of Methylene blue and Thionine in different solvents. Dyes and Pigments, 2018, 149, 236-241.	3.7	16
42	Control of the direction of energy transfer in associates of colloidal quantum dots Ag2S/TGA and dye molecules. EPJ Web of Conferences, 2018, 190, 04015.	0.3	0
43	Spectral properties of hybrid associates of colloidal quantum dots Zn0.5Cd0.5S, europium tenoyltrifluoroacetonate and methylene blue. EPJ Web of Conferences, 2018, 190, 04017.	0.3	1
44	Thermostimulated Luminescence in Colloidal Ag2S Quantum Dots. Russian Journal of Physical Chemistry B, 2018, 12, 611-616.	1.3	2
45	Nonlinear optical absorption of non-spherical silver nanoparticles and organic dyes mixtures. EPJ Web of Conferences, 2018, 190, 04016.	0.3	0
46	Luminescent Properties of Hybrid Nanostructures Based on Quantum Dots of CdS, Europium 1,3-Diketonate, and Methylene Blue Molecules. Optics and Spectroscopy (English Translation of Optika) Tj ETQqQ) @&rgBT	/Osverlock 10
47	Singlet-Oxygen Sensitization by Associates of Methylene Blue with Colloidal Ag2S Quantum Dots Passivated by Thioglycolic Acid. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784314 r	g BT.¢ Overl	o a k 10 Tf 50
48	Luminescence and Nonlinear Optical Properties of Hybrid Associates of Ag2S Quantum Dots with Molecules of Thiazine Dyes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 673-680.	0.6	11
49	Nonlinear optical properties of associates of dyes with zinc sulfide nanoparticles. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2018, 85, 302.	0.4	3
50	Optical limiting, nonlinear refraction and nonlinear absorption of the associates of Cd ₀₅ Zn ₀₅ S quantum dots and dyes. Optics Express, 2018, 26, 13865.	3.4	25
51	Size-Dependent Optical Properties of Colloidal CdS Quantum Dots Passivated by Thioglycolic Acid. Semiconductors, 2018, 52, 1137-1144.	0.5	14
52	Demonstration of variation of the nonlinear optical absorption of non-spherical silver nanoparticles. Optik, 2018, 175, 93-98.	2.9	20
53	Photoinduced Degradation of the Optical Properties of Colloidal Ag2S and CdS Quantum Dots Passivated by Thioglycolic Acid. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784314 rg	g BT.¢ Overl	o alo 10 Tf <u>50</u>
54	Determining the size dependence in the absorption spectra of rutile nanoparticles. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2018, 85, 377.	0.4	1

OLEG OVCHINNIKOV

#	Article	IF	CITATIONS
55	Effective high-order harmonic generation from metal sulfide quantum dots. Optics Express, 2018, 26, 35013.	3.4	30
56	Singlet oxygen luminescence detecting in presence of hybrid associates of colloidal Ag2S quantum dots with methylene blue molecules. EPJ Web of Conferences, 2017, 132, 03038.	0.3	0
57	Nonlinear optical absorption in mixtures of dye molecules and ZnS nanoparticles. Journal of Nonlinear Optical Physics and Materials, 2017, 26, 1750045.	1.8	6
58	Decay of electronic excitations in colloidal thioglycolic acid (TGA)-capped CdS/ZnS quantum dots. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	12
59	Optical band gap shift in thin LiNbO3 films grown by radio-frequency magnetron sputtering. Ceramics International, 2017, 43, 13565-13568.	4.8	10
60	Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	6
61	Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vibrational Spectroscopy, 2016, 86, 181-189.	2.2	293
62	Sensitization of photoprocesses in colloidal Ag 2 S quantum dots by dye molecules. Journal of Nanophotonics, 2016, 10, 033505.	1.0	25
63	Absorption of light by colloidal semiconductor quantum dots. Journal of Nanophotonics, 2016, 10, 033506.	1.0	11
64	The size dependence recombination luminescence of hydrophilic colloidal CdS quantum dots in gelatin. Journal of Luminescence, 2016, 179, 413-419.	3.1	37
65	Enhancement of Luminescence of Colloidal Ag2S Quantum Dots by Thionine Molecules. Journal of Applied Spectroscopy, 2016, 83, 442-448.	0.7	6
66	Organic–inorganic nanostructures for luminescent indication in the near-infrared range. Technical Physics Letters, 2016, 42, 365-367.	0.7	10
67	Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 511-518.	2.7	13
68	Nonlinear optical characterization of colloidal solutions containing dye and Ag2S quantum dot associates. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	14
69	Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye. Journal of Luminescence, 2016, 176, 77-85.	3.1	42
70	The formation and luminescent properties of hybrid associates of colloidal Ag2S quantum dots with J-aggregates of trimethinecyanine dye. Nanotechnologies in Russia, 2016, 11, 85-91.	0.7	2
71	Relationship between structural and optical properties of colloidal Cd x Zn 1 â^ x S quantum dots in gelatin. Journal of Nanophotonics, 2016, 10, 033507.	1.0	15
72	Optical power limiting in ensembles of colloidal Ag2S quantum dots. Quantum Electronics, 2015, 45, 1143-1150.	1.0	22

10

#	Article	IF	CITATIONS
73	Optical and structural properties of ensembles of colloidal Ag2S quantum dots in gelatin. Semiconductors, 2015, 49, 373-379.	0.5	40
74	Spectroscopic manifestations of hybrid association of CdS colloidal quantum dots with J-aggregates of a thiatrimethine cyanine dye. Optics and Spectroscopy (English Translation of Optika I) Tj ETQqO 0 0 rgBT /Ove	erl o ak 10 ⁻	Tf 50 697 Td
75	Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 159-163.	2.7	20
76	Spectroscopic investigation of colloidal CdS quantum dots–methylene blue hybrid associates. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	48
77	Relation of absorption band edge of rutile films and their structure. Inorganic Materials: Applied Research, 2014, 5, 14-21.	0.5	0
78	Synthesis of thin p-type rutile films. Semiconductors, 2014, 48, 251-256.	0.5	1

79	Luminescence properties of hydrophilic hybrid associates of colloidal CdS quantum dots and methylene blue. Journal of Luminescence, 2014, 156, 212-218.	3.1	29
80	Absorption spectra of TiO2 thin films synthesized by the reactive radio-frequency magnetron sputtering of titanium. Semiconductors, 2014, 48, 848-858.	0.5	6

81	Band diagram of the Si-LiNbO3 heterostructures grown by radio-frequency magnetron sputtering. Thin Solid Films, 2013, 542, 289-294.	1.8	14
82	Photostimulated luminescence flash: from scientific photography to photonics of nanostructured materials. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 544-553.	0.6	4
83	The mechanism of sensitized anti-stokes luminescence in crystals with adsorbed dyes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 554-562.	0.6	4

84	Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 340-348.	0.6	15
85	Decay of electronic excitations in CdS and CdS/ZnS colloidal quantum dots: spectral and kinetic investigations. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 651-659.	0.6	22
86	Recording of information in nanostructures of transition metal silicides. Proceedings of SPIE, 2013, , .	0.8	0
87	The nature of the luminescence-flash photostimulation spectra in CdS quantum dots. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 415.	0.4	4
88	Luminescence amplification of dye molecules in the presence of silver nanoparticles. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2012, 79, 56.	0.4	6
89	Enhancement of anti-stokes sensitized luminescence in AgCl(I) crystals in the presence of silver nanoparticles. Journal of Applied Spectroscopy, 2012, 78, 909-912.	0.7	0

90Spectral characteristics of CdS quantum dots and their associates with dye molecules dispersed in
gelatin. Theoretical and Experimental Chemistry, 2012, 48, 48-53.0.8

#	Article	IF	CITATIONS
91	Conversion of surface plasmon polaritons into photons: visual observation. Physics-Uspekhi, 2011, 54, 291-292.	2.2	7
92	Photoelectric and luminescent properties of dysprosium-doped silver chloride. Semiconductors, 2011, 45, 162-168.	0.5	0
93	Characteristic features of charge transfer in the interaction between sensitizer molecules and AgCl(I) molecules. Journal of Applied Spectroscopy, 2011, 78, 454-456.	0.7	2
94	New method for measuring the IR surface impedance of metals. Optics and Spectroscopy (English) Tj ETQq0 0 0	rgBT /Over 0.6	lock 10 Tf 50
95	Spectrally controlled atom-by-atom photoassembly of silver clusters on the surface of ionic-covalent crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 109, 719-728.	0.6	10
96	Low-threshold anti-Stokes frequency conversion in Zn0.6Cd0.4S microcrystals with adsorbed metal-organic nanoclusters. Quantum Electronics, 2010, 40, 490-494.	1.0	3
97	Low-threshold up-conversion luminescence in ZnxCd1â^'xS with oxidized surface. Physica B: Condensed Matter, 2009, 404, 5013-5015.	2.7	6
98	Anti-stokes luminescence of Zn0.75Cd0.25S microcrystals annealed in the presence of oxygen. Semiconductors, 2009, 43, 347-351.	0.5	0
99	Sensitized anti-stokes luminescence centers in AgCl crystals. Semiconductors, 2009, 43, 852-857.	0.5	1
100	Thermal radiation of two-dimensional Bose-Einstein gas of surface plasmons. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 397.	2.1	6
101	Low-threshold power limitation of optical radiation in crystals with sensitized anti-Stokes luminescence. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2009, 76, 725.	0.4	1
102	Sensitized anti-Stokes luminescence centers in microcrystals of Zn0.6Cd0.4S solid solutions with adsorbed dye molecules and few-atomic silver clusters. Russian Physics Journal, 2008, 51, 244-250.	0.4	0
103	Photostimulated formation of small atomic silver clusters of a specified size on the surface of silver chloride and zinc sulfide single crystals. High Energy Chemistry, 2008, 42, 524-526.	0.9	1
104	Photostimulated formation of sensitized anti-Stokes luminescence centers in AgCl(I) microcrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2007, 103, 482-489.	0.6	13
105	Photoionization spectra of silver dimers adsorbed on the surface of a ZnS single crystal. Journal of Applied Spectroscopy, 2007, 74, 605-607.	0.7	0
106	Anti-stokes luminescence of Zn0.6Cd0.4S solid solutions with adsorbed organic dye molecules and few-atom silver clusters. Journal of Applied Spectroscopy, 2007, 74, 681-686.	0.7	0
107	Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals. Journal of Applied Spectroscopy, 2007, 74, 809-816.	0.7	48

108Photostimulated formation of anti-stokes luminescence centers in ionic covalent crystals. Doklady
Physics, 2006, 51, 400-402.0.79

OLEG OVCHINNIKOV

#	Article	IF	CITATIONS
109	Photoionization spectra of silver atoms adsorbed on the surface of a ZnS single crystal. Journal of Applied Spectroscopy, 2006, 73, 377-381.	0.7	1
110	Anti-Stokes luminescence of microcrystals of AgCl0.9510.05 solid solutions with adsorbed organic dye molecules. Journal of Applied Spectroscopy, 2006, 73, 662-666.	0.7	1
111	Mechanism of the Photonic Activation of Solid-Phase Processes. High Energy Chemistry, 2005, 39, 397-402.	0.9	1
112	Mechanism Underlying the Recombination of Nonequilibrium Charge Carriers Localized at Deep Traps in Silver Chloride. Journal of Applied Spectroscopy, 2005, 72, 224-228.	0.7	3
113	Anti-stokes luminescence of solid AgCl0.9510.05 solutions. Journal of Applied Spectroscopy, 2005, 72, 809-813.	0.7	0
114	A Microwave Photoconductivity and Photostimulated Flash Luminescence Study of Silver Chloride Photolysis. High Energy Chemistry, 2004, 38, 264-268.	0.9	0
115	A Method for Determining the Ionization Spectra of Monodispersed Clusters of Noble Metals Adsorbed on the Surfaces of Ionic–Covalent Crystals. Instruments and Experimental Techniques, 2004, 47, 833-838.	0.5	2
116	Mechanism of Crystal Phosphor Luminescence. Journal of Applied Spectroscopy, 2004, 71, 243-247.	0.7	1
117	Absorption Spectra of Metal Atoms Adsorbed on the Surface of a Single Crystal. Journal of Applied Spectroscopy, 2003, 70, 817-820.	0.7	5