Huan Pang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4942231/huan-pang-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24,968 84 138 429 h-index g-index citations papers 8.09 458 31,919 9.5 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
429	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. <i>Chemical Society Reviews</i> , 2020 , 49, 1414-1448	58.5	587
428	Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1602733	21.8	582
427	Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1703259	21.8	479
426	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. <i>Chemical Society Reviews</i> , 2015 , 44, 5181-99	58.5	455
425	Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. <i>Chemical Society Reviews</i> , 2020 , 49, 301-331	58.5	416
424	MetalBrganic frameworks as a platform for clean energy applications. <i>EnergyChem</i> , 2020 , 2, 100027	36.9	377
423	Rechargeable zinc ir batteries: a promising way to green energy. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7651-7666	13	323
422	Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8155-8186	13	317
421	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. <i>Energy and Environmental Science</i> , 2013 , 6, 3619	35.4	307
420	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 19078-19085	13	305
419	Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries. <i>Advanced Science</i> , 2018 , 5, 1700592	13.6	304
418	Ultrathin NickelCobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid-State Electrolyte. <i>Advanced Functional Materials</i> , 2017 , 27, 1605784	15.6	297
417	Metal-organic frameworks for direct electrochemical applications. <i>Coordination Chemistry Reviews</i> , 2018 , 376, 292-318	23.2	294
416	MoS-Based Nanocomposites for Electrochemical Energy Storage. <i>Advanced Science</i> , 2017 , 4, 1600289	13.6	278
415	Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. <i>ACS Nano</i> , 2014 , 8, 3761-70	16.7	271
414	A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. <i>National Science Review</i> , 2020 , 7, 305-314	10.8	265
413	One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. <i>Nano Energy</i> , 2017 , 35, 138-145	17.1	262

412	Nitrogen-Doped Cobalt Oxide Nanostructures Derived from CobaltAlanine Complexes for High-Performance Oxygen Evolution Reactions. <i>Advanced Functional Materials</i> , 2018 , 28, 1800886	15.6	239
411	High performance electrochemical capacitor materials focusing on nickel based materials. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 175-202	6.8	238
410	Vanadium based materials as electrode materials for high performance supercapacitors. <i>Journal of Power Sources</i> , 2016 , 329, 148-169	8.9	216
409	Porous hollow CoDIwith rhombic dodecahedral structures for high-performance supercapacitors. <i>Nanoscale</i> , 2014 , 6, 14354-9	7.7	215
408	Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9613-9619	13	215
407	Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. <i>Nature Catalysis</i> , 2018 , 1, 214-220	36.5	209
406	Prussian blue and its derivatives as electrode materials for electrochemical energy storage. <i>Energy Storage Materials</i> , 2017 , 9, 11-30	19.4	204
405	MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. <i>Small</i> , 2018 , 14, e1704435	11	193
404	Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. <i>Scientific Reports</i> , 2014 , 4, 3577	4.9	190
403	A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Self-Transformation. <i>Advanced Materials</i> , 2016 , 28, 5242-8	24	190
402	Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. <i>Coordination Chemistry Reviews</i> , 2020 , 410, 213222	23.2	187
401	MetalBrganic framework composites and their electrochemical applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7301-7327	13	186
400	Ultrathin two-dimensional cobaltBrganic framework nanosheets for high-performance electrocatalytic oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22070-22076	13	182
399	Supercapacitors based on metal coordination materials. <i>Coordination Chemistry Reviews</i> , 2018 , 373, 2-2 ⁻⁷	123.2	180
398	Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. <i>Electrochimica Acta</i> , 2013 , 88, 708-712	6.7	180
397	High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. <i>Nano Energy</i> , 2019 , 66, 104132	17.1	178
396	Nanostructured graphene-based materials for flexible energy storage. <i>Energy Storage Materials</i> , 2017 , 9, 150-169	19.4	177
395	Metal B rganic frameworks for lithium B ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3469-349	9113	175

394	Nanoparticle/MOF composites: preparations and applications. <i>Materials Horizons</i> , 2017 , 4, 557-569	14.4	174
393	Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15889-15896	13	161
392	Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1804950	15.6	160
391	Ni and NiO Nanoparticles Decorated Metal-Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 22342-22349	9.5	154
390	Lamellar K2Co3(P2O7)2IPH2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. <i>Nano Energy</i> , 2015 , 15, 303-312	17.1	153
389	Superlong Single-Crystal Metal-Organic Framework Nanotubes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15393-15401	16.4	153
388	Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, 2009, 1076-8	5.8	144
387	Design and synthesis of covalent organic frameworks towards energy and environment fields. <i>Chemical Engineering Journal</i> , 2019 , 355, 602-623	14.7	141
386	Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. <i>Chemical Communications</i> , 2009 , 7542-4	5.8	138
385	N,S co-doped 3D mesoporous carbon © o3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12774-12781	13	137
384	Metal-Organic Framework-Derived Carbons for Battery Applications. <i>Advanced Energy Materials</i> , 2018 , 8, 1800716	21.8	136
383	Applications of Metal-Organic-Framework-Derived Carbon Materials. <i>Advanced Materials</i> , 2019 , 31, e18	0 <u>4</u> 740	136
382	Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. <i>Electrochimica Acta</i> , 2010 , 55, 6830-6835	6.7	135
381	Facile Synthesis of Vanadium Metal-Organic Frameworks for High-Performance Supercapacitors. <i>Small</i> , 2018 , 14, e1801815	11	128
380	MXeneID layered electrode materials for energy storage. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 133-147	3.6	127
379	Syntheses and Energy Storage Applications of MxSy (M = Cu, Ag, Au) and Their Composites: Rechargeable Batteries and Supercapacitors. <i>Advanced Functional Materials</i> , 2017 , 27, 1703949	15.6	126
378	Graphitic carbon nitride based materials for electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 901-924	13	120
377	Ruthenium based materials as electrode materials for supercapacitors. <i>Chemical Engineering Journal</i> , 2018 , 333, 505-518	14.7	118

(2014-2012)

376	Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. <i>Dalton Transactions</i> , 2012 , 41, 13284-91	4.3	118
375	Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. <i>Nano Energy</i> , 2015 , 17, 339-347	17.1	117
374	Noble metal-based materials in high-performance supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 33-51	6.8	117
373	Low-symmetry iron oxide nanocrystals bound by high-index facets. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6328-32	16.4	117
372	Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5234-5239	7.3	114
371	One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. <i>RSC Advances</i> , 2014 , 4, 699	83.7	113
370	Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. <i>Dalton Transactions</i> , 2012 , 41, 5862-8	4.3	113
369	Carbon nanotube-based materials for lithium Bulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17204-17241	13	112
368	Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 11-28	6.8	110
367	High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. <i>Nanoscale</i> , 2016 , 8, 18578-18595	7.7	110
366	Electrochemical detection of dopamine using water-soluble sulfonated graphene. <i>Electrochimica Acta</i> , 2013 , 102, 58-65	6.7	109
365	A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. <i>Sensors and Actuators B: Chemical</i> , 2014 , 190, 809-817	8.5	108
364	Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance. <i>Nanoscale</i> , 2017 , 9, 15206-15225	7.7	107
363	Core-shell materials for advanced batteries. <i>Chemical Engineering Journal</i> , 2019 , 355, 208-237	14.7	106
362	Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. <i>Chemical Science</i> , 2017 , 8, 2959-2965	9.4	103
361	FeO -Based Materials for Electrochemical Energy Storage. <i>Advanced Science</i> , 2018 , 5, 1700986	13.6	101
360	Facile one-pot generation of metal oxide/hydroxide@metal-organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. <i>Chemical Communications</i> , 2019 , 55, 10904-10907	5.8	97
359	Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. <i>Electrochimica Acta</i> , 2014 , 149, 86-93	6.7	95

358	A review of electrochemical energy storage behaviors based on pristine metal®rganic frameworks and their composites. <i>Coordination Chemistry Reviews</i> , 2020 , 416, 213341	23.2	94
357	Polypyrrole coated hollow metalBrganic framework composites for lithiumBulfur batteries. Journal of Materials Chemistry A, 2019 , 7, 19465-19470	13	94
356	Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. <i>Chemical Engineering Journal</i> , 2019 , 373, 1319-1328	14.7	91
355	Facile fabrication of NH4CoPO4IH2O nano/microstructures and their primarily application as electrochemical supercapacitor. <i>Nanoscale</i> , 2012 , 4, 5946-53	7.7	91
354	Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. <i>Nanoscale</i> , 2010 , 2, 920-2	7.7	91
353	Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600798	4.6	90
352	Applications of Tin Sulfide-Based Materials in Lithium-Ion Batteries and Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001298	15.6	90
351	A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15969-15974	13	89
350	Few-layered CoHPO4 🛮 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. <i>Nanoscale</i> , 2013 , 5, 5752-7	7.7	89
349	Recent Progress in Some Amorphous Materials for Supercapacitors. <i>Small</i> , 2018 , 14, e1800426	11	88
348	Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. <i>Small</i> , 2017 , 13, 1700917	11	87
347	Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst. <i>Nanoscale</i> , 2017 , 9, 216-222	7.7	85
346	Copper-based nanostructures: promising antibacterial agents and photocatalysts. <i>Chemical Communications</i> , 2009 , 3571-3	5.8	85
345	Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. <i>Carbon</i> , 2017 , 113, 63-75	10.4	84
344	Hierarchical ZnO Nanorod-Assembled Hollow Superstructures for Catalytic and Photoluminescence Applications. <i>Crystal Growth and Design</i> , 2010 , 10, 40-43	3.5	84
343	Development and application of self-healing materials in smart batteries and supercapacitors. <i>Chemical Engineering Journal</i> , 2020 , 380, 122565	14.7	81
342	Comparison of NiS2 and ENiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment. <i>Dalton Transactions</i> , 2015 , 44, 17278-85	4.3	8o
341	Ultrathin nanosheet-assembled [Ni(OH)(PTA)(HO)]IZHO hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. <i>Nanoscale</i> , 2018 , 10, 13270-13276	7.7	80

340	Porous nanocubic Mn3O4-Co3O4 composites and their application as electrochemical supercapacitors. <i>Dalton Transactions</i> , 2012 , 41, 10175-81	4.3	80
339	Tungsten-Based Materials for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1707500	15.6	80
338	Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. <i>Nanoscale</i> , 2015 , 7, 16012-9	7.7	79
337	Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 2543-2570	7.8	79
336	Non-noble metal-transition metal oxide materials for electrochemical energy storage. <i>Energy Storage Materials</i> , 2018 , 15, 171-201	19.4	78
335	Facile Synthesis of Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation. <i>ACS Applied Materials & Discounty of the Process of the Science Synthesis and Process of the Synthesis and Process o</i>	367	77
334	NiS hollow spheres for high-performance supercapacitors and non-enzymatic glucose sensors. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 679-86	4.5	77
333	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. <i>Chemical Engineering Journal</i> , 2019 , 364, 226-243	14.7	75
332	Two-Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. <i>Chemistry - A European Journal</i> , 2020 , 26, 6402-6422	4.8	75
331	Advanced batteries based on manganese dioxide and its composites. <i>Energy Storage Materials</i> , 2018 , 12, 284-309	19.4	75
330	In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. <i>Nano Letters</i> , 2021 , 21, 3016-3025	11.5	75
329	Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. <i>Progress in Natural Science: Materials International</i> , 2016 , 26, 237-242	3.6	73
328	Smart Yolk/Shell [emailiprotected] Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033	8.3	72
327	Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. <i>Nanoscale</i> , 2013 , 5, 503-7	7.7	7 <u>2</u>
326	Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. <i>RSC Advances</i> , 2012 , 2, 2257	3.7	72
325	A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. <i>Chemical Communications</i> , 2019 , 55, 7922-7925	5.8	71
324	Co3O4 and its composites for high-performance Li-ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 343, 427-446	14.7	71
323	Two-dimensional EMnOIhanowire network with enhanced electrochemical capacitance. <i>Scientific Reports</i> , 2013 , 3, 2193	4.9	71

322	The synthesis and electrochemical applications of corellhell MOFs and their derivatives. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15519-15540	13	70
321	Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 791-797	6.8	70
320	Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. <i>Nanoscale</i> , 2014 , 6, 10989-94	7.7	70
319	Synthesis of copper(II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12609		70
318	MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25318-25322	16.4	70
317	Exposing {001} Crystal Plane on Hexagonal Ni-MOF with Surface-Grown Cross-Linked Mesh-Structures for Electrochemical Energy Storage. <i>Small</i> , 2019 , 15, e1902463	11	69
316	Fabrication of novel comb-like Cu(2)O nanorod-based structures through an interface etching method and their application as ethanol sensors. <i>Chemical Communications</i> , 2010 , 46, 7022-4	5.8	69
315	Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3305-3328	4.5	69
314	Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li-S Battery. <i>Advanced Materials</i> , 2021 , 33, e2105163	24	69
313	Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. <i>Chemical Engineering Journal</i> , 2018 , 332, 253-259	14.7	68
312	Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. <i>Coordination Chemistry Reviews</i> , 2019 , 389, 119-140	23.2	66
311	Ultrathin Cu-MOF@EMnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17329-17336	13	66
310	1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors. <i>Journal of Power Sources</i> , 2015 , 285, 385-392	8.9	65
309	Current Advances in Semiconductor Nanomaterial-Based Photoelectrochemical Biosensing. <i>Chemistry - A European Journal</i> , 2018 , 24, 14010-14027	4.8	65
308	Dual anode materials for lithium- and sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4236-4259	13	65
307	Amorphous Intermediate Derivative from ZIF-67 and Its Outstanding Electrocatalytic Activity. <i>Small</i> , 2020 , 16, e1904252	11	65
306	Transition metal (Fe, Co, Ni) fluoride-based materials for electrochemical energy storage. <i>Nanoscale Horizons</i> , 2019 , 4, 99-116	10.8	64
305	Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. <i>Sensors and Actuators B: Chemical</i> , 2017 , 252, 72-78	8.5	63

(2010-2019)

304	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. <i>Chemical Engineering Journal</i> , 2019 , 370, 37-59	14.7	63	
303	Self-sacrificed synthesis of conductive vanadium-based MetalDrganic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries. <i>Nano Energy</i> , 2019 , 64, 103935	17.1	63	
302	The application of CeO2-based materials in electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17675-17702	13	62	
301	Hollow Structural Transition Metal Oxide for Advanced Supercapacitors. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701509	4.6	62	
300	EConjugated Molecule Boosts Metal-Organic Frameworks as Efficient Oxygen Evolution Reaction Catalysts. <i>Small</i> , 2018 , 14, e1803576	11	61	
299	Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2463-2471	13	60	
298	Applications of MSe (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion. <i>Nano-Micro Letters</i> , 2019 , 11, 40	19.5	59	
297	Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. <i>Advanced Science</i> , 2019 , 6, 1801103	13.6	59	
296	Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 382, 122853	14.7	59	
295	Hierarchically nanostructured transition metal oxides for supercapacitors. <i>Science China Materials</i> , 2018 , 61, 185-209	7.1	58	
294	Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage. <i>Small</i> , 2018 , 14, e1703811	11	57	
293	A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. <i>Mikrochimica Acta</i> , 2013 , 180, 821-827	5.8	57	
292	Electrostatic self-assembly for preparation of sulfonated graphene/gold nanoparticle hybrids and their application for hydrogen peroxide sensing. <i>Electrochimica Acta</i> , 2012 , 85, 628-635	6.7	57	
291	Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. <i>CrystEngComm</i> , 2010 , 12, 406-412	3.3	57	
2 90	Ultrathin Nanobelts as an Excellent Bifunctional Oxygen Catalyst: Insight into the Subtle Changes in Structure and Synergistic Effects of Bimetallic Metal Drganic Framework. <i>Small Methods</i> , 2018 , 2, 1800240	12.8	57	
289	Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. <i>Scientific Reports</i> , 2014 , 4, 5687	4.9	56	
288	Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties. <i>RSC Advances</i> , 2012 , 2, 5930	3.7	56	
287	Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. <i>Chemical Communications</i> , 2010 , 46, 2010-2	5.8	56	

286	Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. <i>Chemical Engineering Journal</i> , 2018 , 351, 441-461	14.7	55
285	Development and application of carbon fiber in batteries. <i>Chemical Engineering Journal</i> , 2020 , 384, 1237	2 94 .7	55
284	A new strategy for the controllable growth of MOF@PBA architectures. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17266-17271	13	54
283	Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1731-7	4.5	54
282	Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22123-22147	13	53
281	Cu superstructures fabricated using tree leaves and CuMnO2 superstructures for high performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5053	13	53
280	One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors. <i>Materials Research Bulletin</i> , 2015 , 61, 333-339	5.1	52
279	Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for High-Performance Supercapacitors. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400377	4.6	51
278	Nickel Phosphite Superstructures Assembled by Nanotubes: Original Application for Effective Electrode Materials of Supercapacitors. <i>ChemPlusChem</i> , 2013 , 78, 546-553	2.8	51
277	Fabrication Methods of Porous Carbon Materials and Separator Membranes for LithiumBulfur Batteries: Development and Future Perspectives. <i>Small Methods</i> , 2017 , 1, 1700089	12.8	51
276	Porous nickel oxide microflowers synthesized by calcination of coordination microflowers and their applications as glutathione electrochemical sensor and supercapacitors. <i>Electrochimica Acta</i> , 2012 , 85, 256-262	6.7	51
275	Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. <i>Journal of Hazardous Materials</i> , 2020 , 395, 122692	12.8	51
274	Derivatives of coordination compounds for rechargeable batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13999-14024	13	51
273	A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19627-19632	16.4	50
272	CoreBhell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2514-2520	6.8	50
271	Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 1049-1056	2.6	50
270	A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. <i>Advanced Functional Materials</i> , 2021 , 31, 2104231	15.6	50
269	Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithiumBulfur batteries. <i>Rare Metals</i> , 2020 , 39, 1099-1106	5.5	48

(2019-2016)

268	Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. <i>RSC Advances</i> , 2016 , 6, 87188-87212	3.7	48
267	Synthesis and Progress of New Oxygen-Vacant Electrode Materials for High-Energy Rechargeable Battery Applications. <i>Small</i> , 2018 , 14, e1802193	11	48
266	Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device. <i>Scientific Reports</i> , 2015 , 5, 8536	4.9	46
265	Manganese monoxide-based materials for advanced batteries. <i>Coordination Chemistry Reviews</i> , 2018 , 368, 13-34	23.2	46
264	Activated graphene with tailored pore structure parameters for long cycle-life lithiumBulfur batteries. <i>Nano Research</i> , 2017 , 10, 4305-4317	10	45
263	Different positive electrode materials in organic and aqueous systems for aluminium ion batteries. Journal of Materials Chemistry A, 2019 , 7, 14391-14418	13	45
262	Enhanced Electrochemical Performance of Sb2O3 as an Anode for Lithium-Ion Batteries by a Stable Cross-Linked Binder. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 2677	2.6	45
261	Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1383-1391	2.6	45
260	Synthesis of confining cobalt nanoparticles within SiO /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. <i>Chemical Engineering Journal</i> , 2020 , 401, 126005	14.7	44
259	Fabrication of Cu O-based Materials for Lithium-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 1581-1599	8.3	44
258	Tin-based nanomaterials for electrochemical energy storage. RSC Advances, 2016, 6, 95449-95468	3.7	44
257	MIL-96-Al for Li-S Batteries: Shape or Size?. <i>Advanced Materials</i> , 2021 , e2107836	24	44
256	One Dimensional Silver-based Nanomaterials: Preparations and Electrochemical Applications. <i>Small</i> , 2017 , 13, 1701091	11	42
255	Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. <i>CrystEngComm</i> , 2013 , 15, 5950	3.3	42
254	Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. <i>National Science Review</i> ,	10.8	42
253	Porous pyrrhotite FeS nanowire/SiO/nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. <i>Journal of Colloid and Interface Science</i> , 2020 , 561, 801-807	9.3	42
252	Mesoporous 3D ZnONiO architectures for high-performance supercapacitor electrode materials. <i>CrystEngComm</i> , 2014 , 16, 4169-4175	3.3	41
251	Pristine Transition-Metal-Based Metal-Organic Frameworks for Electrocatalysis. <i>ChemElectroChem</i> , 2019 , 6, 1273-1299	4.3	41

250	Design of hollow carbon-based materials derived from metalorganic frameworks for electrocatalysis and electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3880-391	173	41
249	Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 25037-25041	9.5	40
248	NH4CoPO4IH2O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors. <i>RSC Advances</i> , 2014 , 4, 340-347	3.7	40
247	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. <i>Coordination Chemistry Reviews</i> , 2021 , 439, 213915	23.2	40
246	Hierarchically Porous NaCoPO4©o3O4 Hollow Microspheres for Flexible Asymmetric Solid-State Supercapacitors. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 831-839	3.1	39
245	Cube-like CoSn(OH)6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample. <i>Sensors and Actuators B: Chemical</i> , 2017 , 241, 528-533	8.5	39
244	Promoting performance of lithium ulfur battery via in situ sulfur reduced graphite oxide coating. <i>Rare Metals</i> , 2021 , 40, 417-424	5.5	39
243	Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. <i>Chinese Chemical Letters</i> , 2020 , 31, 2280-2286	8.1	38
242	Recent advancements in Prussian blue analogues: Preparation and application in batteries. <i>Energy Storage Materials</i> , 2021 , 36, 387-408	19.4	38
241	Nitrogen-, phosphorus-doped carbonflarbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. <i>Rare Metals</i> , 2020 , 39, 680-687	5.5	37
240	Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides. <i>Chemical Communications</i> , 2011 , 47, 11772-4	5.8	37
239	Synthesis of Quasi-Ce-MOFElectrocatalysts for Enhanced Urea Oxidation Reaction Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8675-8680	8.3	36
238	The Research Development of Quantum Dots in Electrochemical Energy Storage. Small, 2018, 14, e1801	1479	36
237	The Morphology Evolution of Nickel Phosphite Hexagonal Polyhedrons and Their Primary Electrochemical Capacitor Applications. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 287-295	53.1	36
236	MoS2/graphene composites: Fabrication and electrochemical energy storage. <i>Energy Storage Materials</i> , 2020 , 33, 470-502	19.4	36
235	Microporous Ni[HPO][OH)[hanocrystals for high-performance flexible asymmetric all solid-state supercapacitors. <i>Dalton Transactions</i> , 2014 , 43, 17000-5	4.3	35
234	Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents. CrystEngComm, 2012 , 14, 7330	3.3	35
233	Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties. <i>Crystal Research and Technology</i> , 2012 , 47, 1032-1038	1.3	35

(2013-2017)

232	Facile one-step synthesis of Ag@CeO2 corellhell nanospheres with efficient catalytic activity for the reduction of 4-nitrophenol. <i>CrystEngComm</i> , 2017 , 19, 684-689	3.3	34
231	Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. <i>Mikrochimica Acta</i> , 2014 , 181, 1581-1589	5.8	34
230	Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode materials. <i>RSC Advances</i> , 2014 , 4, 14872-14878	3.7	34
229	Electrospun-Technology-Derived High-Performance Electrochemical Energy Storage Devices. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2967-2995	4.5	33
228	Mesoporous hybrid NiOx-MnOx nanoprisms for flexible solid-state asymmetric supercapacitors. <i>Dalton Transactions</i> , 2016 , 45, 10789-97	4.3	32
227	Facile synthesis of silver nanowire-zeolitic imidazolate framework 67 composites as high-performance bifunctional oxygen catalysts. <i>Nanoscale</i> , 2018 , 10, 15755-15762	7.7	32
226	Biowaste-Derived Porous Carbon with Tuned Microstructure for High-Energy Quasi-Solid-State Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 13127-13135	8.3	32
225	The application of transition metal cobaltites in electrochemistry. <i>Energy Storage Materials</i> , 2019 , 23, 439-465	19.4	31
224	CoreBhell Co 11 (HPO 3) 8 (OH) 6 to 3 O 4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors. <i>Journal of Alloys and Compounds</i> , 2015 , 651, 214-221	5.7	31
223	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 2089-2096	6.8	31
222	Ultrathin nickel terephthalate nanosheet three-dimensional aggregates with disordered layers for highly efficient overall urea electrolysis. <i>Chemical Engineering Journal</i> , 2020 , 395, 125166	14.7	31
221	Nitrogen-Doped Carbon Dopper Nanohybrids as Electrocatalysts in H2O2 and Glucose Sensing. <i>ChemElectroChem</i> , 2014 , 1, 799-807	4.3	31
220	Magnetite syntheses from room temperature to 150°LC with and without microwaves. <i>Ceramics International</i> , 2012 , 38, 2563-2568	5.1	31
219	Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. <i>Chinese Chemical Letters</i> , 2020 , 31, 1941-1945	8.1	31
218	Metal Drganic Framework-Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078	8.7	31
217	High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) Hybrid Nanosheet Films. <i>ACS Applied Materials & Discrete Seas</i> , 2018, 10, 38341-38349	9.5	31
216	Highly dispersed and stabilized nickel nanoparticle/silicon oxide/nitrogen-doped carbon composites for high-performance glucose electrocatalysis. <i>Sensors and Actuators B: Chemical</i> , 2019 , 297, 126809	8.5	30
215	A template method for synthesis of porous Sn-doped TiO2 monolith and its enhanced photocatalytic activity. <i>Materials Letters</i> , 2013 , 93, 419-422	3.3	30

214	Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium Bulfur Batteries. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 1036	2.6	30
213	Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. <i>Nano Research</i> , 2021 , 14, 1405	-1412	30
212	Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2883-2889	2.6	29
211	TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts. <i>Catalysis Communications</i> , 2011 , 12, 611-615	3.2	29
210	Nickel Oxide/Graphene Composites: Synthesis and Applications. <i>Chemistry - A European Journal</i> , 2019 , 25, 2141-2160	4.8	29
209	Iron oxide-based nanomaterials for supercapacitors. <i>Nanotechnology</i> , 2019 , 30, 204002	3.4	28
208	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8986-8992	8.3	28
207	Hydrothermal Synthesis of Nickel Phosphate Nanorods for High-Performance Flexible Asymmetric All-Solid-State Supercapacitors. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 880-885	3.1	28
206	New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. <i>Materials Chemistry and Physics</i> , 2015 , 165, 207-214	4.4	28
205	Phosphorus-based materials for high-performance rechargeable batteries. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 1424-1444	6.8	28
204	Low-Symmetry Iron Oxide Nanocrystals Bound by High-Index Facets. <i>Angewandte Chemie</i> , 2010 , 122, 6472-6476	3.6	28
203	Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithiumBulfur batteries. <i>RSC Advances</i> , 2016 , 6, 39918-39925	3.7	28
202	Porous dimanganese trioxide microflowers derived from microcoordinations for flexible solid-state asymmetric supercapacitors. <i>Nanoscale</i> , 2016 , 8, 11689-97	7.7	28
201	Niobium/tantalum-based materials: Synthesis and applications in electrochemical energy storage. <i>Chemical Engineering Journal</i> , 2020 , 380, 122428	14.7	28
200	Copper-Based Nanomaterials for High-Performance Lithium-Ion Batteries. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 784-810	3.1	27
199	Porous high specific surface area-activated carbon with co-doping N, S and P for high-performance supercapacitors. <i>RSC Advances</i> , 2017 , 7, 43780-43788	3.7	27
198	When Conductive MOFs Meet MnO: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. <i>ACS Applied Materials & District Supercapacity</i> , 13, 33083-33090	9.5	27
197	Copper-based materials as highly active electrocatalysts for the oxygen evolution reaction. Materials Today Chemistry, 2019 , 11, 169-196	6.2	27

(2018-2021)

196	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. <i>Science China Materials</i> , 2021 , 64, 137-148	7.1	27	
195	Mesoporous Ni0.3Co2.7O4 hierarchical structures for effective non-enzymatic glucose detection. <i>RSC Advances</i> , 2014 , 4, 33514-33519	3.7	26	
194	Uniform M3PMo12O40[hH2O (M = NH4+, K+, Cs+) rhombic dodecahedral nanocrystals for effective antibacterial agents. <i>Dalton Transactions</i> , 2013 , 42, 15637-44	4.3	26	
193	Vanadium sulfide based materials: synthesis, energy storage and conversion. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20781-20802	13	26	
192	MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. <i>Angewandte Chemie</i> , 2021 , 133, 25522	3.6	26	
191	Graphene/Co3O4 composites in application of electrochemical energy conversion and storage. <i>FlatChem</i> , 2019 , 16, 100107	5.1	25	
190	Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4265-4274	6.1	25	
189	Zinc Oxide Based Composite Materials for Advanced Supercapacitors. <i>ChemistrySelect</i> , 2018 , 3, 550-565	5 1.8	25	
188	Cu superstructures hydrothermally reduced by leaves and derived Cullo3O4 hybrids for flexible solid-state electrochemical energy storage devices. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4840-4847	7 ¹³	25	
187	Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. <i>CrystEngComm</i> , 2010 , 12, 1404-1409	3.3	25	
186	Emerging Metal Single Atoms in Electrocatalysts and Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2003870	15.6	25	
185	Metal-Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. <i>Advanced Energy Materials</i> ,2100346	21.8	25	
184	A glassy carbon electrode modified with ordered nanoporous Co3O4 for non-enzymatic sensing of glucose. <i>Mikrochimica Acta</i> , 2017 , 184, 943-949	5.8	24	
183	High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 2177-2188	2.6	24	
182	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. <i>Nanoscale</i> , 2020 , 12, 10685-10692	7.7	24	
181	Ultrathin cobalt pyrophosphate nanosheets with different thicknesses for Zn-air batteries. <i>Journal of Colloid and Interface Science</i> , 2020 , 563, 328-335	9.3	24	
180	Catalysis within coordination cages. Coordination Chemistry Reviews, 2021, 430, 213656	23.2	24	
179	Ultrathin Nanosheet Assembled Sn Co S Nanocages with Exposed (100) Facets for High-Performance Lithium-Ion Batteries. <i>Small</i> , 2018 , 14, 1702184	11	24	

178	Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries. <i>Science China Chemistry</i> , 2020 , 63, 475-482	7.9	23
177	Electrochemical determination of glutathione based on an electrodeposited nickel oxide nanoparticles-modified glassy carbon electrode. <i>Analytical Methods</i> , 2013 , 5, 1779	3.2	23
176	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. <i>Coordination Chemistry Reviews</i> , 2020 , 422, 213468	23.2	23
175	Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 417, 128408	14.7	23
174	CoP@SiO2nanoreactors: A core-shell structure for efficient electrocatalytic oxygen evolution reaction. <i>Chinese Chemical Letters</i> , 2020 , 31, 2300-2304	8.1	22
173	Development of High-Voltage Aqueous Electrochemical Energy Storage Devices. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700279	4.6	21
172	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. <i>Journal of Colloid and Interface Science</i> , 2019 , 537, 262-268	9.3	21
171	Ultrathin Nanosheet Ni-Metal Organic Framework Assemblies for High-Efficiency Ascorbic Acid Electrocatalysis. <i>ChemElectroChem</i> , 2018 , 5, 3859-3865	4.3	21
170	Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry. <i>Chemical Engineering Journal</i> , 2019 , 372, 551-571	14.7	20
169	Nickel hydroxidelickel nanohybrids indirectly from coordination microfibers for high-performance supercapacitor electrodes. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 129-135	6.8	20
168	Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. Journal of Colloid and Interface Science, 2020 , 580, 614-622	9.3	20
167	In Situ Growth of Three-Dimensional MXene/Metal-Organic Framework Composites for High-Performance Supercapacitors <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	20
166	Zeolitic Imidazolate Framework-67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 429-433	3.1	19
165	Facile synthesis of mono-dispersive hierarchical nickel-based microspheres as potential catalysts. <i>Catalysis Communications</i> , 2011 , 12, 1031-1036	3.2	19
164	NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 709-718	9.3	19
163	Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9535-9572	13	19
162	Oxygen Vacancies Enhancing Electrocatalysis Performance of Porous Copper Oxide. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600420	3.1	18
161	One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. <i>Rare Metals</i> , 2017 , 36, 457-464	5.5	18

(2020-2019)

160	One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. <i>Chemical Communications</i> , 2019 , 55, 9160-9163	5.8	18
159	Assembling CdS mesoporous nanosheets into 3D hierarchitectures for effective photocatalytic performance. <i>Dalton Transactions</i> , 2014 , 43, 5687-93	4.3	18
158	Porous Mn3[Co(CN)6]2[hH2O nanocubes as a rapid organic dyes adsorption material. <i>RSC Advances</i> , 2012 , 2, 9614	3.7	18
157	Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors. <i>Chemistry - A European Journal</i> , 2020 , 26, 3326-3334	4.8	18
156	Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. <i>Applied Materials Today</i> , 2020 , 18, 100517	6.6	18
155	Preparation of N, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. <i>RSC Advances</i> , 2017 , 7, 47448-47455	3.7	17
154	Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. Journal of Energy Storage, 2020 , 31, 101544	7.8	17
153	Alternate Integration of Vertically Oriented CuSe@FeOOH and CuSe@MnOOH Hybrid Nanosheets Frameworks for Flexible In-Plane Asymmetric Micro-supercapacitors. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3692-3703	6.1	17
152	N-Doped Mesoporous ZnO with Oxygen Vacancies for Stable Hydrazine Electrocatalysis. <i>ChemNanoMat</i> , 2019 , 5, 79-84	3.5	17
151	Electrocatalysis of Rechargeable Non-Lithium MetalAir Batteries. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700589	4.6	17
150	One-step fabrication of Cd(OH)2 nanorings via a solution phase synthesis. <i>Chemical Communications</i> , 2010 , 46, 6183-5	5.8	17
149	Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11201-11209	13	17
148	Controllable synthesis and electrochemical capacitor performance of MOF-derived MnOx/N-doped carbon/MnO2 composites. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2873-2884	6.8	16
147	Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18492-18514	13	16
146	Advances in metal organic framework-based nanozymes and their applications. <i>Coordination Chemistry Reviews</i> , 2021 , 449, 214216	23.2	16
145	Recent advances in two-dimensional materials for alkali metal anodes. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5232-5257	13	16
144	Ultrathin cerium orthovanadate nanobelts for high-performance flexible all-solid-state asymmetric supercapacitors. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 338-43	4.5	15
143	CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. <i>Chinese Chemical Letters</i> , 2020 , 31, 2330-2332	8.1	15

142	Some MoS2-based materials for sodium-ion battery. Functional Materials Letters, 2018, 11, 1840004	1.2	15
141	Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for LithiumBulfur Batteries. <i>Energy and Environmental Materials</i> ,	13	15
140	Fe-based phosphate nanostructures for supercapacitors. <i>Chinese Chemical Letters</i> , 2021 , 32, 885-889	8.1	15
139	Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 416, 127884	14.7	15
138	Synthesis and application of metal-organic framework films. <i>Coordination Chemistry Reviews</i> , 2021 , 444, 214060	23.2	15
137	Mesoporous NHNiPOIHO for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. <i>Frontiers in Chemistry</i> , 2019 , 7, 118	5	14
136	Synthesis of Co Mn Ni C O ?n H O Micropolyhedrons: Multimetal Synergy for High-Performance Glucose Oxidation Catalysis. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2259-2265	4.5	14
135	The State of Research Regarding Ordered Mesoporous Materials in Batteries. <i>Small</i> , 2019 , 15, e180460	011	14
134	Mesoporous ZnS-NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors. <i>ChemistryOpen</i> , 2015 , 4, 32-8	2.3	14
133	Ultrathin nanosheet-assembled accordion-like Ni-MOF for hydrazine hydrate amperometric sensing. <i>Mikrochimica Acta</i> , 2020 , 187, 168	5.8	14
132	Flexible Supercapacitors: A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Self-Transformation (Adv. Mater. 26/2016). <i>Advanced Materials</i> , 2016 , 28, 5241	24	14
131	Simple, fast and selective detection of adenosine triphosphate at physiological pH using unmodified gold nanoparticles as colorimetric probes and metal ions as cross-linkers. <i>Sensors</i> , 2012 , 12, 15078-87	3.8	14
130	Vanadium-Based Materials as Positive Electrode for Aqueous Zinc-Ion Batteries. <i>Advanced Sustainable Systems</i> , 2020 , 4, 2000178	5.9	14
129	Application of graphene-metal/conductive polymer based composites in supercapacitors?. <i>Journal of Energy Storage</i> , 2021 , 33, 102037	7.8	14
128	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. <i>Chemical Engineering Journal</i> , 2021 , 421, 129645	14.7	14
127	Single-crystalline hyperbranched nanostructure of iron hydroxyl phosphate Fe5(PO4)4(OH)312H2O for highly selective capture of phosphopeptides. <i>Scientific Reports</i> , 2014 , 4, 3753	4.9	13
126	Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. <i>Journal of Energy Storage</i> , 2019 , 26, 101018	7.8	13
125	High-Performance Flexible Solid-State Asymmetric Supercapacitors based on Ordered Mesoporous Cobalt Oxide. <i>Energy Technology</i> , 2017 , 5, 544-548	3.5	13

124	Porous Ni/NiO nanohybrids for electrochemical catalytic glucose oxidation. <i>Chinese Chemical Letters</i> , 2021 , 32, 2017-2020	8.1	13	
123	Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2021 , 420, 130518	14.7	13	
122	Facile synthesis of Mn3[Co(CN)6]2[hH2O nanocrystals for high-performance electrochemical energy storage devices. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 442-449	6.8	12	
121	Synthesis of Iron Phosphate and Their Composites for Lithium/Sodium Ion Batteries. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700154	5.9	12	
120	Our Contributions in Nanochemistry for Antibiosis, Electrocatalyst and Energy Storage Materials. <i>Chemical Record</i> , 2018 , 18, 91-104	6.6	12	
119	Concentration as a trigger to improve electrocatalytic activity of a Prussian blue analogue in glucose oxidation. <i>CrystEngComm</i> , 2019 , 21, 5455-5460	3.3	12	
118	PBA composites and their derivatives in energy and environmental applications. <i>Coordination Chemistry Reviews</i> , 2022 , 451, 214260	23.2	12	
117	Hatted 1T/2H-Phase MoS on Ni S Nanorods for Efficient Overall Water Splitting in Alkaline Media. <i>Chemistry - A European Journal</i> , 2020 , 26, 2034-2040	4.8	12	
116	Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation. <i>Journal of Colloid and Interface Science</i> , 2021 , 589, 56-64	9.3	12	
115	Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability. <i>Chinese Chemical Letters</i> , 2021 , 32, 3817-3817	8.1	12	
114	Exposing (0 0 1) crystal facet on the single crystalline ENi(OH)2 quasi-nanocubes for aqueous Ni-Zn batteries. <i>Chemical Engineering Journal</i> , 2021 , 413, 127523	14.7	12	
113	Facile synthesis of Ni3(BO3)2 nanoribbons and their antimicrobial, electrochemical and electrical properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13889		11	
112	CdTe/PEDOT-PSS hybrid microspheres: Facile fabrication and multiple-color pH-sensing. <i>Polymer</i> , 2011 , 52, 2542-2549	3.9	11	
111	Pillared-layer Ni-MOF nanosheets anchored on TiC MXene for enhanced electrochemical energy storage <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 130-137	9.3	11	
110	SiOx-based (0 . Chinese Chemical Letters, 2020 , 31, 654-666	8.1	11	
109	Construction of SiO/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 784-792	9.3	11	
108	Morphology and size controlled synthesis of Co-doped MIL-96 by different alkaline modulators for sensitively detecting alpha-fetoprotein. <i>Chinese Chemical Letters</i> , 2020 , 31, 2263-2267	8.1	10	
107	Synthesis of lithium metal silicates for lithium ion batteries. <i>Chinese Chemical Letters</i> , 2017 , 28, 2195-220	861	10	

106	Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging. <i>Nanoscale Research Letters</i> , 2014 , 9, 115	5	10
105	General synthesis of nitrogen-doped metal (M = Co2+, Mn2+, Ni2+, or Cu2+) phosphates. <i>Chemical Engineering Journal</i> , 2021 , 411, 128544	14.7	10
104	Ultrathin nanosheet metal®rganic framework@NiO/Ni nanorod composites. <i>Chemical Engineering Journal</i> , 2021 , 417, 129201	14.7	10
103	Applications of Metal-Organic Frameworks in Water Treatment: A Review. <i>Small</i> , 2021 , e2105715	11	10
102	Regulation of the Ni Content in a Hierarchical Urchin-Like MOF for High-Performance Electrocatalytic Oxygen Evolution. <i>Frontiers in Chemistry</i> , 2019 , 7, 411	5	9
101	Ultrathin Ni-MOF Nanobelts-Derived Composite for High Sensitive Detection of Nitrite. <i>Frontiers in Chemistry</i> , 2020 , 8, 330	5	9
100	Achieving High-Performance Supercapacitors by Constructing Porous ZincManganese Oxide Microstructures. <i>Energy Technology</i> , 2015 , 3, 820-824	3.5	9
99	Self-assembly Synthesis of High-density Platinum Nanoparticles on Chemically Reduced Graphene Sheets. <i>Chemistry Letters</i> , 2011 , 40, 104-105	1.7	9
98	Controllable synthesis of copper ion guided MIL-96 octadecahedron: highly sensitive aptasensor toward alpha-fetoprotein. <i>Applied Materials Today</i> , 2020 , 20, 100745	6.6	9
97	Deposition of Nanostructured Fluorine-Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2899-2904	3.8	9
96	Layered V-MOF nanorods for rechargeable aqueous zinc-ion batteries. <i>Materials Today Chemistry</i> , 2021 , 21, 100513	6.2	9
95	Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. <i>SmartMat</i> ,	22.8	9
94	In-situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel-Zinc Batteries <i>Advanced Materials</i> , 2022 , e2201779	24	9
93	ZrO2/Dy2O3 Solid Solution Nano-Materials: Tunable Composition, Visible light R esponsive Photocatalytic Activities and Reaction Mechanism. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 2979-2986	3.8	8
92	Ferric phosphate hydroxide microcrystals for highly efficient visible-light-driven photocatalysts. <i>ChemPhysChem</i> , 2013 , 14, 2518-24	3.2	8
91	Template-free synthesis of hierarchically porous NaCoPO4©o3O4 hollow microspheres and their application as electrocatalysts for glucose. <i>CrystEngComm</i> , 2015 , 17, 4540-4546	3.3	8
90	One-dimensional metal-organic frameworks for electrochemical applications. <i>Advances in Colloid and Interface Science</i> , 2021 , 298, 102562	14.3	8
89	Facile synthesis of sub-10hm ZnS/ZnO nanoflakes for high-performance flexible triboelectric nanogenerators. <i>Nano Energy</i> , 2021 , 88, 106256	17.1	8

88	EMnOOH Nanowires Hydrothermally Reduced by Leaves for High-Efficiency Electrocatalysis of the Glucose Oxidation Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8972-8978	8.3	7	
87	Easy fabrication of ultralight CNx foams with application as absorbents and continuous flow oilWater separation. <i>Materials Today Communications</i> , 2015 , 4, 116-123	2.5	7	
86	PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2790-2795	4.5	7	
85	Hierarchical Bimetallic Hydroxides Built by Porous Nanowire-Lapped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solid-State Supercapacitors. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900959	4.6	7	
84	Amorphous Cobalt Coordination Nanolayers Incorporated with Silver Nanowires: A New Electrode Material for Supercapacitors. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600412	3.1	7	
83	Recent advances and challenges of metal@rganic framework/graphene-based composites. <i>Composites Part B: Engineering</i> , 2021 , 230, 109532	10	7	
82	Applications of metalBrganic frameworkBraphene composite materials in electrochemical energy storage. <i>FlatChem</i> , 2022 , 32, 100332	5.1	7	
81	Nickel-Based Sulfide Materials for Batteries. <i>ChemistrySelect</i> , 2018 , 3, 12967-12986	1.8	7	
80	Encapsulation of NiCo nanoparticles into foam-like porous N,P-codoped carbon nanosheets: Electronic and architectural dual regulations toward high-efficiency water electrolysis. <i>Chemical Engineering Journal</i> , 2021 , 410, 128325	14.7	6	
79	Fabrication of defect-rich bifunctional hollow NiTe2 nanotubes for high performance hydrogen evolution electrocatalysts and supercapacitors. <i>Journal of Energy Storage</i> , 2021 , 42, 103098	7.8	6	
78	Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 4222-4229	6.8	6	
77	Framework materials for supercapacitors. <i>Nanotechnology Reviews</i> , 2022 , 11, 1005-1046	6.3	6	
76	Hydrothermal synthesis of EMnOOH nanowires using sapless leaves as the reductant: an effective catalyst for the regio-specific epoxidation of Elonone. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2572-2576	5.8	5	
75	Facile Synthesis of Polypyrrole Nanotubes and Their Supercapacitive Application. <i>International Journal of Electrochemical Science</i> , 2017 , 9320-9334	2.2	5	
74	Studies on the structural stability of Co2P2O7 under pressure. <i>Journal of Physics and Chemistry of Solids</i> , 2018 , 116, 113-117	3.9	5	
73	MXenes nanocomposites for energy storage and conversion. <i>Rare Metals</i> ,1	5.5	5	
72	Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts <i>Small Methods</i> , 2022 , 6, e2101186	12.8	5	
71	Nickel-Based Materials for Advanced Rechargeable Batteries. <i>Advanced Functional Materials</i> ,2107928	15.6	5	

70	High-Performance Capacitive Deionization and Killing Microorganism in Surface-Water by ZIF-9 Derived Carbon Composites <i>Small Methods</i> , 2021 , 5, e2101070	12.8	5
69	Recent advances in metal organic frameworks and their composites for batteries. <i>Nano Futures</i> , 2020 , 4, 032007	3.6	5
68	A Hierarchically Porous ZIF@LDH Core-Shell Structure for High-Performance Supercapacitors. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 845-849	4.5	5
67	Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. <i>Chinese Chemical Letters</i> , 2021 , 32, 2909-2909	8.1	5
66	MetalBrganic framework-derived phosphide nanomaterials for electrochemical applications 2022 , 4, 246-281		5
65	Applications of metalBrganic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. <i>Coordination Chemistry Reviews</i> , 2022 , 466, 214602	23.2	5
64	Zirconium-Based Materials for Electrochemical Energy Storage. <i>ChemElectroChem</i> , 2019 , 6, 1949-1968	4.3	4
63	A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. <i>Angewandte Chemie</i> , 2020 , 132, 19795-19800	3.6	4
62	Aluminum-based materials for advanced battery systems. Science China Materials, 2017, 60, 577-607	7.1	4
61	Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties. <i>ChemistryOpen</i> , 2015 , 4, 274-7	2.3	4
60	The mitochondrial genome of the Chinese special butterfly Luehdorfia chinensis Leech (Lepidoptera: Papilionidae). <i>Mitochondrial DNA</i> , 2013 , 24, 211-3		4
59	Modified Metal@rganic Frameworks for Electrochemical Applications. <i>Small Structures</i> ,2100200	8.7	4
58	In Situ Growth of Three-Dimensional MXene/Metal®rganic Framework Composites for High-Performance Supercapacitors. <i>Angewandte Chemie</i> ,e202116282	3.6	4
57	Synthesis of 3D printing materials and their electrochemical applications. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	4
56	A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	4
55	Non-precious nickel-based catalysts for hydrogen oxidation reaction in alkaline electrolyte. <i>Electrochemistry Communications</i> , 2020 , 121, 106871	5.1	4
54	Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	4
53	Synthesis of nickel-metal organic framework nanoplates with pyridine modulation and application to supercapacitors. <i>Journal of Energy Storage</i> , 2021 , 38, 102528	7.8	4

52	Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. <i>Science China Materials</i> , 2021 , 64, 1556-1562	7.1	4	
51	From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. <i>Inorganic Chemistry</i> , 2021 , 60, 13168-13176	5.1	4	
50	Review on synthesis of porous TiO2-based catalysts for energy conversion systems. <i>Ceramics International</i> , 2021 , 47, 25177-25200	5.1	4	
49	Nickel/Cobalt phosphate ultrathin nanosheets grown on the surface of Fe(PO3)3 nanosheets for high performance supercapacitors. <i>Journal of Energy Storage</i> , 2021 , 42, 103082	7.8	4	
48	Cyanide-metal framework derived porous MoO3-Fe2O3 hybrid micro- octahedrons as superior anode for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 426, 130347	14.7	4	
47	Design and synthesis of transition metal oxide/zeolitic imidazolate framework-67 composites. <i>Chemical Engineering Journal</i> , 2022 , 429, 132146	14.7	4	
46	Bi-directional-bi-dimensionality alignment of self-supporting Mn3O4 nanorod and nanotube arrays with different bacteriostasis and magnetism. <i>Nanoscale</i> , 2013 , 5, 12231-6	7.7	3	
45	Sandwich-type polymer nanofiber structure of poly(furfuryl alcohol): an effective template for ordered porous films. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 12477-81	3.4	3	
44	Fabrication of Cu3V2O7(OH)2I2H2O Nanoribbons and Cu3V2O7(OH)2I2H2O/PANI Nanocomposites Used in Supercapacitors. <i>Chemistry Letters</i> , 2010 , 39, 192-193	1.7	3	
43	Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 1898-1	987	3	
42	Printable Electrode Materials for Supercapacitors 2021 , 1, 17-17		3	
41	Metal © rganic Framework-Based Sulfur-Loaded Materials. <i>Energy and Environmental Materials</i> ,	13	3	
40	Three-dimensional Co2V2O7IhH2O superstructures assembled by nanosheets for electrochemical energy storage. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	3	
39	VOx/VSx@Graphene nanocomposites for electrochemical energy storage. <i>Chemical Engineering Journal</i> , 2021 , 404, 126310	14.7	3	
38	Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	3	
37	Derivatives (Cu/CuO, Cu/Cu2O, and CuS) of Cu superstructures reduced by biomass reductants. <i>Materials Today Chemistry</i> , 2021 , 21, 100519	6.2	3	
36	MetalBrganic frameworks-derived metal phosphides for electrochemistry application. <i>Green Energy and Environment</i> , 2021 ,	5.7	3	
35	Turning coordination environment of 2D nickel-based metal-organic frameworks by Econjugated molecule for enhancing glucose electrochemical sensor performance. <i>Materials Today Chemistry</i> , 2022 , 24, 100885	6.2	3	

34	In-Situ growth of MnO2 nanoflakes on Co3V2O8 generating a hollow hexahedron: Zn-storage properties, and investigation of electrochemical mechanism. <i>Chemical Engineering Journal</i> , 2022 , 440, 135931	14.7	3
33	Synthesis of Tostadas-Shaped Metal-Organic Frameworks for Remitting Capacity Fading of Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2022 , 32, 2109927	15.6	3
32	Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 2019, 6, 4922-49	94β 3	2
31	A coordination cage hosting ultrafine and highly catalytically active gold nanoparticles <i>Chemical Science</i> , 2022 , 13, 461-468	9.4	2
30	Wearable and antibacterial HPMC-anchored conductive polymer composite strain sensor with high gauge factors under small strains. <i>Chemical Engineering Journal</i> , 2022 , 435, 135068	14.7	2
29	Ni75Cu25O polyhedron material derived from nickel-copper oxalate as high-performance electrocatalyst for glucose oxidation. <i>Composites Communications</i> , 2021 , 100999	6.7	2
28	Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater. <i>Materials Today Chemistry</i> , 2022 , 23, 100705	6.2	2
27	Ultrasmall metal (Fe, Co, Ni) nanoparticles strengthen silicon oxide embedded nitrogen-doped carbon superstructures for long-cycle-life Li-ion-battery anodes. <i>Chemical Engineering Journal</i> , 2022 , 432, 134413	14.7	2
26	Nanoreactors derived from silica-protection-assisted metal-organic framework. <i>Chinese Chemical Letters</i> , 2020 , 31, 2207-2210	8.1	2
25	Flexible All-Solid-State Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Polyacrylonitrile Copolymer. <i>ACS Applied Energy Materials</i> , 2021 , 4, 58	36:583	39 ²
24	Controllable synthesis of a flower-like superstructure of nickel metal-organic phosphate and its derivatives for supercapacitors. <i>Applied Materials Today</i> , 2021 , 23, 101048	6.6	2
23	Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution. <i>Chinese Chemical Letters</i> , 2021 , 32, 2239-2242	8.1	2
22	Facile Synthesis of Zn/N-doped CuO and Their Application in Oxygen Evolution Reaction. <i>ChemistrySelect</i> , 2018 , 3, 12205-12209	1.8	2
21	Synthesis of Ni4Yb(OH)10NO3? 3H2O Nanosheets for Electrode Materials in Electrochemical Energy Storage. <i>ChemElectroChem</i> , 2018 , 5, 3150-3154	4.3	2
20	NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. <i>Chemical Engineering Journal</i> , 2022 , 136321	14.7	2
19	Electrochemical activation-induced surface-reconstruction of NiOx microbelt superstructure of coreEhell nanoparticles for superior durability electrocatalysis. <i>Journal of Colloid and Interface Science</i> , 2022 , 624, 443-449	9.3	2
18	Synthesis of Functional Nanomaterials for Electrochemical Energy Storage 2020,		1
17	Magnetic field-assisted hydrothermal synthesis of magnetic microwire arrays. <i>Chemical Physics Letters</i> , 2009 , 482, 118-120	2.5	1

LIST OF PUBLICATIONS

16	Synthesis of Porous Cubic Nickel Oxide Nanostructures and their Electrochemical Property. <i>Advanced Materials Research</i> , 2012 , 557-559, 628-631	0.5	1
15	Cubic-Like Nickel Oxide Nanostructures as Large Specific Capacitance and Long-Life Supercapacitors. <i>Advanced Materials Research</i> , 2012 , 516-517, 1688-1691	0.5	1
14	Recent progress and challenges in plasmonic nanomaterials. <i>Nanotechnology Reviews</i> , 2022 , 11, 846-87	73 6.3	1
13	Copper sulfides and their composites for high-performance rechargeable batteries. <i>Materials Today Chemistry</i> , 2022 , 23, 100675	6.2	1
12	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 430, 133040	14.7	1
11	Nickel sulfide nanorods decorated on graphene as advanced hydrogen evolution electrocatalysts in acidic and alkaline media. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 2633-2633	9.3	1
10	Ultrathin One-Dimensional Ni-MIL-77 Nanobelts for High-Performance Electrocatalytic Urea Evolution. <i>Crystal Growth and Design</i> , 2021 , 21, 3639-3644	3.5	1
9	Direct preparation of hierarchical macroporous ESiC using SiO2 opal as both template and precursor and its application in water splitting. <i>Materials Technology</i> , 2016 , 31, 526-531	2.1	1
8	Hierarchical Cobalt-Nickel Double Hydroxide Arrays Assembled on Naturally Sedimented Ti 3 C 2 T x for High-Performance Flexible Supercapacitors. <i>Advanced Sustainable Systems</i> , 2022 , 6, 2100371	5.9	1
7	Facile control synthesis of Ag3PO4 and morphologies effects on their photocatalytic properties. <i>Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems</i> , 2011 , 225, 67-69		0
6	Brief Overview of Next-Generation Batteries. SpringerBriefs in Materials, 2020, 35-51	0.5	
5	Synthetic Strategies for One-Dimensional/One-Dimensional Analogue Nanomaterials. <i>SpringerBriefs in Materials</i> , 2020 , 1-18	0.5	
4	Synthesis of Three-Dimensional Nanomaterials 2020 , 79-105		
3	One-Dimensional/One-Dimensional Analogue TMOs for Advanced Batteries. <i>SpringerBriefs in Materials</i> , 2020 , 53-70	0.5	
2	Nanomaterials for Supercapacitors 2020 , 195-220		
1	Nano/Micro MOF-Based Materials 2021 , 1-40		