List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4942231/publications.pdf Version: 2024-02-01

ΗΠΑΝ ΡΑΝΟ

#	Article	IF	CITATIONS
1	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
2	Transitionâ€Metal (Fe, Co, Ni) Based Metalâ€Organic Frameworks for Electrochemical Energy Storage. Advanced Energy Materials, 2017, 7, 1602733.	10.2	711
3	Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49, 301-331.	18.7	685
4	Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1703259.	10.2	679
5	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44, 5181-5199.	18.7	546
6	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
7	A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. National Science Review, 2020, 7, 305-314.	4.6	487
8	Hierarchically Nanostructured Transition Metal Oxides for Lithiumâ€ion Batteries. Advanced Science, 2018, 5, 1700592.	5.6	440
9	Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A, 2017, 5, 7651-7666.	5.2	432
10	Metal-organic frameworks for direct electrochemical applications. Coordination Chemistry Reviews, 2018, 376, 292-318.	9.5	430
11	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 19078-19085.	5.2	411
12	Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. Journal of Materials Chemistry A, 2017, 5, 8155-8186.	5.2	394
13	MoS ₂ â€Based Nanocomposites for Electrochemical Energy Storage. Advanced Science, 2017, 4, 1600289.	5.6	374
14	Applications of Metal–Organicâ€Frameworkâ€Derived Carbon Materials. Advanced Materials, 2019, 31, e1804740.	11.1	369
15	Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solidâ€6tate Electrolyte. Advanced Functional Materials, 2017, 27, 1605784.	7.8	368
16	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 3619.	15.6	347
17	High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy, 2019, 66, 104132.	8.2	344
18	Rational Design and General Synthesis of Multimetallic Metal–Organic Framework Nanoâ€Octahedra for Enhanced Li–S Battery. Advanced Materials, 2021, 33, e2105163.	11.1	324

#	Article	IF	CITATIONS
19	Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors. ACS Nano, 2014, 8, 3761-3770.	7.3	322
20	Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coordination Chemistry Reviews, 2020, 410, 213222.	9.5	321
21	Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nature Catalysis, 2018, 1, 214-220.	16.1	310
22	One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy, 2017, 35, 138-145.	8.2	305
23	Nitrogenâ€Đoped Cobalt Oxide Nanostructures Derived from Cobalt–Alanine Complexes for Highâ€Performance Oxygen Evolution Reactions. Advanced Functional Materials, 2018, 28, 1800886.	7.8	302
24	MOFâ€Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small, 2018, 14, e1704435.	5.2	297
25	MXeneâ€Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 25318-25322.	7.2	295
26	Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 7301-7327.	5.2	284
27	High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chemistry Frontiers, 2016, 3, 175-202.	3.0	283
28	Vanadium based materials as electrode materials for high performance supercapacitors. Journal of Power Sources, 2016, 329, 148-169.	4.0	272
29	Nanoparticle/MOF composites: preparations and applications. Materials Horizons, 2017, 4, 557-569.	6.4	262
30	Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Materials, 2017, 9, 11-30.	9.5	260
31	Metal–organic frameworks for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 3469-3491.	5.2	259
32	Porous hollow Co ₃ O ₄ with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale, 2014, 6, 14354-14359.	2.8	252
33	In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. Nano Letters, 2021, 21, 3016-3025.	4.5	250
34	Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 22070-22076.	5.2	249
35	A Review of MOFs and Their Compositesâ€Based Photocatalysts: Synthesis and Applications. Advanced Functional Materials, 2021, 31, 2104231.	7.8	243
36	Facile synthesis and superior electrochemical performances of CoNi ₂ S ₄ /graphene nanocomposite suitable for supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 9613-9619.	5.2	241

#	Article	IF	CITATIONS
37	Supercapacitors based on metal coordination materials. Coordination Chemistry Reviews, 2018, 373, 2-21.	9.5	231
38	Superlong Single-Crystal Metal–Organic Framework Nanotubes. Journal of the American Chemical Society, 2018, 140, 15393-15401.	6.6	230
39	A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Selfâ€Transformation. Advanced Materials, 2016, 28, 5242-5248.	11.1	229
40	Ni and NiO Nanoparticles Decorated Metal–Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. ACS Applied Materials & Interfaces, 2017, 9, 22342-22349.	4.0	229
41	Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Scientific Reports, 2014, 4, 3577.	1.6	222
42	Metalâ€Organic Frameworks/Grapheneâ€Based Materials: Preparations and Applications. Advanced Functional Materials, 2018, 28, 1804950.	7.8	219
43	Carbon nanotube-based materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 17204-17241.	5.2	214
44	In Situ Growth of Threeâ€Dimensional MXene/Metal–Organic Framework Composites for Highâ€Performance Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	211
45	Nanostructured graphene-based materials for flexible energy storage. Energy Storage Materials, 2017, 9, 150-169.	9.5	205
46	MILâ€96â€Al for Li–S Batteries: Shape or Size?. Advanced Materials, 2022, 34, e2107836.	11.1	205
47	Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta, 2013, 88, 708-712.	2.6	199
48	MXene–2D layered electrode materials for energy storage. Progress in Natural Science: Materials International, 2018, 28, 133-147.	1.8	197
49	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
50	Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 15889-15896.	5.2	189
51	Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 901-924.	5.2	178
52	Metalâ€Organic Frameworkâ€Derived Carbons for Battery Applications. Advanced Energy Materials, 2018, 8, 1800716.	10.2	174
53	Porphyrin-based framework materials for energy conversion. , 2022, 1, e9120009.		174
54	Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. National Science Review, 2022, 9, .	4.6	171

#	Article	IF	CITATIONS
55	Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, 2009, , 1076.	2.2	170
56	Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy, 2015, 15, 303-312.	8.2	170
57	Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 11-28.	3.0	169
58	Twoâ€Ðimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry - A European Journal, 2020, 26, 6402-6422.	1.7	168
59	Facile Synthesis of Vanadium Metalâ€Organic Frameworks for Highâ€Performance Supercapacitors. Small, 2018, 14, e1801815.	5.2	167
60	N,S co-doped 3D mesoporous carbon–Co ₃ Si ₂ O ₅ (OH) ₄ architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 12774-12781.	5.2	160
61	A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coordination Chemistry Reviews, 2020, 416, 213341.	9.5	159
62	Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. Journal of Materials Chemistry B, 2017, 5, 5234-5239.	2.9	157
63	Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance. Nanoscale, 2017, 9, 15206-15225.	2.8	156
64	Core-shell materials for advanced batteries. Chemical Engineering Journal, 2019, 355, 208-237.	6.6	156
65	Applications of Tin Sulfideâ€Based Materials in Lithiumâ€Ion Batteries and Sodiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2001298.	7.8	154
66	Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chemical Communications, 2009, , 7542.	2.2	152
67	Noble metal-based materials in high-performance supercapacitors. Inorganic Chemistry Frontiers, 2017, 4, 33-51.	3.0	151
68	FeO <i>_x</i> â€Based Materials for Electrochemical Energy Storage. Advanced Science, 2018, 5, 1700986.	5.6	151
69	Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. Nano Energy, 2015, 17, 339-347.	8.2	148
70	Ruthenium based materials as electrode materials for supercapacitors. Chemical Engineering Journal, 2018, 333, 505-518.	6.6	147
71	Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochimica Acta, 2010, 55, 6830-6835.	2.6	146
72	Syntheses and Energy Storage Applications of M <i>_x</i> S <i>_y</i> (M = Cu, Ag,) Tj ET	Qq0 0 0 r; 7.8	gBT /Overlock 142

Materials, 2017, 27, 1703949.

#	Article	IF	CITATIONS
73	Development and application of carbon fiber in batteries. Chemical Engineering Journal, 2020, 384, 123294.	6.6	141
74	Recent Progress in Some Amorphous Materials for Supercapacitors. Small, 2018, 14, e1800426.	5.2	140
75	Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Materials, 2021, 36, 387-408.	9.5	137
76	Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. Chemical Science, 2017, 8, 2959-2965.	3.7	136
77	Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 19465-19470.	5.2	136
78	High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries. Nanoscale, 2016, 8, 18578-18595.	2.8	134
79	A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sensors and Actuators B: Chemical, 2014, 190, 809-817.	4.0	133
80	Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chemical Engineering Journal, 2019, 373, 1319-1328.	6.6	132
81	Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Transactions, 2012, 41, 13284.	1.6	130
82	Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 2019, 3, 2543-2570.	3.2	130
83	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
84	Facile one-pot generation of metal oxide/hydroxide@metal–organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. Chemical Communications, 2019, 55, 10904-10907.	2.2	127
85	Development and application of self-healing materials in smart batteries and supercapacitors. Chemical Engineering Journal, 2020, 380, 122565.	6.6	127
86	Co3O4 and its composites for high-performance Li-ion batteries. Chemical Engineering Journal, 2018, 343, 427-446.	6.6	126
87	The synthesis and electrochemical applications of core–shell MOFs and their derivatives. Journal of Materials Chemistry A, 2019, 7, 15519-15540.	5.2	126
88	Metal-organic framework (MOF) composites as promising materials for energy storage applications. Advances in Colloid and Interface Science, 2022, 307, 102732.	7.0	126
89	Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Transactions, 2012, 41, 5862.	1.6	125
90	One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Advances, 2014, 4, 6998.	1.7	125

#	Article	IF	CITATIONS
91	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 2019, 364, 226-243.	6.6	125
92	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213915.	9.5	125
93	Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochimica Acta, 2014, 149, 86-93.	2.6	122
94	Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216.	9.5	122
95	Lowâ€Symmetry Iron Oxide Nanocrystals Bound by Highâ€Index Facets. Angewandte Chemie - International Edition, 2010, 49, 6328-6332.	7.2	121
96	Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochimica Acta, 2013, 102, 58-65.	2.6	120
97	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
98	Smart Yolk/Shell ZIF-67@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033.	3.2	119
99	Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale, 2012, 4, 5946.	2.8	118
100	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117
101	In Situ Synthesis of MOFâ€74 Family for High Areal Energy Density of Aqueous Nickel–Zinc Batteries. Advanced Materials, 2022, 34, e2201779.	11.1	117
102	Tungstenâ€Based Materials for Lithiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1707500.	7.8	114
103	Few-layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale, 2013, 5, 5752.	2.8	113
104	Core–shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 2514-2520.	3.0	113
105	A novel strategy for the synthesis of highly stable ternary SiO _x composites for Li-ion-battery anodes. Journal of Materials Chemistry A, 2019, 7, 15969-15974.	5.2	112
106	Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. Small, 2017, 13, 1700917.	5.2	110
107	Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International, 2016, 26, 237-242.	1.8	109
108	Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. Carbon, 2017, 113, 63-75.	5.4	109

#	Article	IF	CITATIONS
109	When Conductive MOFs Meet MnO ₂ : High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2021, 13, 33083-33090.	4.0	109
110	Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. Advanced Materials Interfaces, 2017, 4, 1600798.	1.9	107
111	Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 2018, 12, 284-309.	9.5	107
112	Self-sacrificed synthesis of conductive vanadium-based Metal–Organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries. Nano Energy, 2019, 64, 103935.	8.2	107
113	Facile Synthesis of Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 2360-2367.	4.0	106
114	Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Materials, 2018, 15, 171-201.	9.5	104
115	Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. Journal of Hazardous Materials, 2020, 395, 122692.	6.5	104
116	Exposing {001} Crystal Plane on Hexagonal Niâ€MOF with Surfaceâ€Grown Crossâ€Linked Meshâ€Structures for Electrochemical Energy Storage. Small, 2019, 15, e1902463.	5.2	103
117	Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coordination Chemistry Reviews, 2019, 389, 119-140.	9.5	103
118	Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - an Asian Journal, 2016, 11, 3305-3328.	1.7	102
119	Ultrathin nanosheet-assembled [Ni ₃ (OH) ₂ (PTA) ₂ (H ₂ O) ₄]·2H ₂ O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale, 2018, 10, 13270-13276.	2.8	102
120	Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale, 2010, 2, 920.	2.8	100
121	A Honeycombâ€Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 19627-19632.	7.2	100
122	Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chemical Engineering Journal, 2020, 382, 122853.	6.6	99
123	MXene opper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angewandte Chemie, 2021, 133, 25522-25526.	1.6	99
124	Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst. Nanoscale, 2017, 9, 216-222.	2.8	98
125	Current Advances in Semiconductor Nanomaterialâ€Based Photoelectrochemical Biosensing. Chemistry - A European Journal, 2018, 24, 14010-14027.	1.7	97
126	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96

#	Article	IF	CITATIONS
127	Copper-based nanostructures: promising antibacterial agents and photocatalysts. Chemical Communications, 2009, , 3571.	2.2	95
128	Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale, 2015, 7, 16012-16019.	2.8	95
129	Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 22123-22147.	5.2	95
130	π onjugated Molecule Boosts Metal–Organic Frameworks as Efficient Oxygen Evolution Reaction Catalysts. Small, 2018, 14, e1803576.	5.2	94
131	A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chemical Communications, 2019, 55, 7922-7925.	2.2	94
132	Applications of Metalâ€Organic Frameworks in Water Treatment: A Review. Small, 2022, 18, e2105715.	5.2	94
133	Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical supercapacitors. Dalton Transactions, 2012, 41, 10175.	1.6	93
134	Comparison of NiS ₂ and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment. Dalton Transactions, 2015, 44, 17278-17285.	1.6	93
135	Hollow Structural Transition Metal Oxide for AdvancedÂSupercapacitors. Advanced Materials Interfaces, 2018, 5, 1701509.	1.9	93
136	Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chemical Engineering Journal, 2018, 351, 441-461.	6.6	93
137	Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. RSC Advances, 2012, 2, 2257.	1.7	90
138	Hierarchically nanostructured transition metal oxides for supercapacitors. Science China Materials, 2018, 61, 185-209.	3.5	90
139	Transition metal (Fe, Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horizons, 2019, 4, 99-116.	4.1	90
140	Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sensors and Actuators B: Chemical, 2017, 252, 72-78.	4.0	89
141	Hierarchical ZnO Nanorod-Assembled Hollow Superstructures for Catalytic and Photoluminescence Applications. Crystal Growth and Design, 2010, 10, 40-43.	1.4	88
142	Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorganic Chemistry Frontiers, 2016, 3, 791-797.	3.0	88
143	Catalysis within coordination cages. Coordination Chemistry Reviews, 2021, 430, 213656.	9.5	88
144	NiS Hollow Spheres for Highâ€Performance Supercapacitors and Nonâ€Enzymatic Clucose Sensors. Chemistry - an Asian Journal, 2015, 10, 679-686.	1.7	87

#	Article	IF	CITATIONS
145	Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Advanced Science, 2019, 6, 1801103.	5.6	87
146	Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 2463-2471.	5.2	86
147	Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination. ACS Applied Materials & Interfaces, 2020, 12, 25037-25041.	4.0	86
148	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
149	Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. Journal of Colloid and Interface Science, 2022, 614, 130-137.	5.0	86
150	Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale, 2013, 5, 503-507.	2.8	85
151	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
152	Two-Dimensional β-MnO2 Nanowire Network with Enhanced Electrochemical Capacitance. Scientific Reports, 2013, 3, 2193.	1.6	83
153	Copper metal–organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. Nanoscale, 2014, 6, 10989-10994.	2.8	82
154	Sodiumâ€Doped Mesoporous Ni ₂ P ₂ O ₇ Hexagonal Tablets for Highâ€Performance Flexible Allâ€Solidâ€State Hybrid Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1731-1737.	1.7	80
155	A new strategy for the controllable growth of MOF@PBA architectures. Journal of Materials Chemistry A, 2019, 7, 17266-17271.	5.2	80
156	PBA composites and their derivatives in energy and environmental applications. Coordination Chemistry Reviews, 2022, 451, 214260.	9.5	80
157	1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors. Journal of Power Sources, 2015, 285, 385-392.	4.0	79
158	Ultrathin Cu-MOF@δ-MnO ₂ nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. Journal of Materials Chemistry A, 2018, 6, 17329-17336.	5.2	79
159	Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Metals, 2020, 39, 1099-1106.	3.6	79
160	Synthesis of copper(ii) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. Journal of Materials Chemistry, 2012, 22, 12609.	6.7	78
161	Dual anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 4236-4259.	5.2	78
162	Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. Chemical Engineering Journal, 2018, 332, 253-259.	6.6	78

#	Article	IF	CITATIONS
163	Applications of MxSey (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion. Nano-Micro Letters, 2019, 11, 40.	14.4	78
164	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	1.7	78
165	Synthesis of "Quasi-Ce-MOF―Electrocatalysts for Enhanced Urea Oxidation Reaction Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8675-8680.	3.2	78
166	Synthesis of confining cobalt nanoparticles within SiO /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 401, 126005.	6.6	75
167	Ultrathin Nanobelts as an Excellent Bifunctional Oxygen Catalyst: Insight into the Subtle Changes in Structure and Synergistic Effects of Bimetallic Metal–Organic Framework. Small Methods, 2018, 2, 1800240.	4.6	73
168	Vanadium sulfide based materials: synthesis, energy storage and conversion. Journal of Materials Chemistry A, 2020, 8, 20781-20802.	5.2	73
169	Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chemical Communications, 2010, 46, 7022.	2.2	72
170	Different positive electrode materials in organic and aqueous systems for aluminium ion batteries. Journal of Materials Chemistry A, 2019, 7, 14391-14418.	5.2	72
171	Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214602.	9.5	71
172	Fabrication Methods of Porous Carbon Materials and Separator Membranes for Lithium–Sulfur Batteries: Development and Future Perspectives. Small Methods, 2017, 1, 1700089.	4.6	69
173	Porous pyrrhotite Fe7S8 nanowire/SiO /nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. Journal of Colloid and Interface Science, 2020, 561, 801-807.	5.0	69
174	Electrostatic self-assembly for preparation of sulfonated graphene/gold nanoparticle hybrids and their application for hydrogen peroxide sensing. Electrochimica Acta, 2012, 85, 628-635.	2.6	67
175	Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. Scientific Reports, 2014, 4, 5687.	1.6	67
176	Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties. RSC Advances, 2012, 2, 5930.	1.7	66
177	Cobaltâ€Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage. Small, 2018, 14, e1703811.	5.2	66
178	Synthesis and Progress of New Oxygenâ€Vacant Electrode Materials for Highâ€Energy Rechargeable Battery Applications. Small, 2018, 14, e1802193.	5.2	66
179	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
180	Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chemical Communications, 2010, 46, 2010.	2.2	65

#	Article	IF	CITATIONS
181	Porous nickel oxide microflowers synthesized by calcination of coordination microflowers and their applications as glutathione electrochemical sensor and supercapacitors. Electrochimica Acta, 2012, 85, 256-262.	2.6	65
182	Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Research, 2021, 14, 1405-1412.	5.8	65
183	Metal–Organic Frameworkâ€Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078.	6.9	65
184	Bimetallic Metalâ€Organic Framework with Highâ€Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries. Energy and Environmental Materials, 2022, 5, 599-607.	7.3	64
185	Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm, 2010, 12, 406-412.	1.3	63
186	A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Mikrochimica Acta, 2013, 180, 821-827.	2.5	62
187	Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for Highâ€Performance Supercapacitors. Advanced Materials Interfaces, 2015, 2, 1400377.	1.9	62
188	Fabrication of Cu ₂ Oâ€based Materials for Lithiumâ€ŀon Batteries. ChemSusChem, 2018, 11, 1581-1599.	3.6	62
189	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421, 129645.	6.6	62
190	Nickel Phosphite Superstructures Assembled by Nanotubes: Original Application for Effective Electrode Materials of Supercapacitors. ChemPlusChem, 2013, 78, 546-553.	1.3	61
191	One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors. Materials Research Bulletin, 2015, 61, 333-339.	2.7	61
192	Application of metal organic framework in wastewater treatment. Green Energy and Environment, 2023, 8, 698-721.	4.7	61
193	Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm, 2013, 15, 5950.	1.3	60
194	Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1383-1391.	1.2	60
195	Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. Journal of Solid State Electrochemistry, 2014, 18, 1049-1056.	1.2	60
196	Ultrathin nickel terephthalate nanosheet three-dimensional aggregates with disordered layers for highly efficient overall urea electrolysis. Chemical Engineering Journal, 2020, 395, 125166.	6.6	60
197	Cu superstructures fabricated using tree leaves and Cu–MnO2 superstructures for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 5053.	5.2	59
198	Enhanced Electrochemical Performance of Sb2O3 as an Anode for Lithium-Ion Batteries by a Stable Cross-Linked Binder. Applied Sciences (Switzerland), 2019, 9, 2677.	1.3	59

#	Article	IF	CITATIONS
199	Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Advances, 2016, 6, 87188-87212.	1.7	58
200	Tin-based nanomaterials for electrochemical energy storage. RSC Advances, 2016, 6, 95449-95468.	1.7	58
201	Derivatives of coordination compounds for rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 13999-14024.	5.2	58
202	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale, 2020, 12, 10685-10692.	2.8	58
203	Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Metals, 2021, 40, 417-424.	3.6	58
204	NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chemical Engineering Journal, 2022, 443, 136321.	6.6	58
205	One Dimensional Silverâ€based Nanomaterials: Preparations and Electrochemical Applications. Small, 2017, 13, 1701091.	5.2	56
206	Manganese monoxide-based materials for advanced batteries. Coordination Chemistry Reviews, 2018, 368, 13-34.	9.5	56
207	Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Metals, 2020, 39, 680-687.	3.6	55
208	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Science China Materials, 2021, 64, 137-148.	3.5	55
209	Cube-like CoSn(OH)6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample. Sensors and Actuators B: Chemical, 2017, 241, 528-533.	4.0	54
210	Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. Journal of Colloid and Interface Science, 2020, 580, 614-622.	5.0	54
211	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorganic Chemistry Frontiers, 2020, 7, 2089-2096.	3.0	54
212	Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 4265-4274.	2.5	54
213	Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 9535-9572.	5.2	54
214	Mesoporous 3D ZnO–NiO architectures for high-performance supercapacitor electrode materials. CrystEngComm, 2014, 16, 4169-4175.	1.3	53
215	Biowaste-Derived Porous Carbon with Tuned Microstructure for High-Energy Quasi-Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 13127-13135.	3.2	53
216	From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorganic Chemistry, 2021, 60, 13168-13176.	1.9	53

#	Article	IF	CITATIONS
217	Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device. Scientific Reports, 2015, 5, 8536.	1.6	52
218	Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Research, 2017, 10, 4305-4317.	5.8	52
219	Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-lon batteries. Chemical Engineering Journal, 2021, 417, 128408.	6.6	52
220	Strategies to improve electrochemical performances of pristine metalâ€organic frameworksâ€based electrodes for lithium/sodiumâ€ion batteries. SmartMat, 2021, 2, 488-518.	6.4	52
221	Synthesis and application of metal-organic framework films. Coordination Chemistry Reviews, 2021, 444, 214060.	9.5	51
222	NH ₄ CoPO ₄ ·H ₂ O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors. RSC Advances, 2014, 4, 340-347.	1.7	50
223	The Research Development of Quantum Dots in Electrochemical Energy Storage. Small, 2018, 14, e1801479.	5.2	50
224	Copper-based materials as highly active electrocatalysts for the oxygen evolution reaction. Materials Today Chemistry, 2019, 11, 169-196.	1.7	50
225	Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. Chinese Chemical Letters, 2020, 31, 2280-2286.	4.8	50
226	Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11201-11209.	5.2	49
227	Zinc Oxide Based Composite Materials for Advanced Supercapacitors. ChemistrySelect, 2018, 3, 550-565.	0.7	48
228	The application of transition metal cobaltites in electrochemistry. Energy Storage Materials, 2019, 23, 439-465.	9.5	48
229	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8986-8992.	3.2	48
230	Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. Chinese Chemical Letters, 2020, 31, 1941-1945.	4.8	48
231	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
232	Hierarchically Porous NaCoPO ₄ -Co ₃ O ₄ Hollow Microspheres for Flexible Asymmetric Solid-State Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 831-839.	1.2	47
233	Porous high specific surface area-activated carbon with co-doping N, S and P for high-performance supercapacitors. RSC Advances, 2017, 7, 43780-43788.	1.7	47
234	Iron oxide-based nanomaterials for supercapacitors. Nanotechnology, 2019, 30, 204002.	1.3	47

#	Article	IF	CITATIONS
235	Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18492-18514.	5.2	47
236	MXenes nanocomposites for energy storage and conversion. Rare Metals, 2022, 41, 1101-1128.	3.6	47
237	In Situ Growth of Threeâ€Dimensional MXene/Metal–Organic Framework Composites for Highâ€Performance Supercapacitors. Angewandte Chemie, 2022, 134, e202116282.	1.6	47
238	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	7.0	45
239	Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts. Small Methods, 2022, 6, e2101186.	4.6	45
240	MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Materials, 2022, 51, 840-872.	9.5	45
241	Facile synthesis of silver nanowire-zeolitic imidazolate framework 67 composites as high-performance bifunctional oxygen catalysts. Nanoscale, 2018, 10, 15755-15762.	2.8	44
242	Nickel Oxide/Graphene Composites: Synthesis and Applications. Chemistry - A European Journal, 2019, 25, 2141-2160.	1.7	44
243	NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. Journal of Colloid and Interface Science, 2021, 581, 709-718.	5.0	44
244	Niobium/tantalum-based materials: Synthesis and applications in electrochemical energy storage. Chemical Engineering Journal, 2020, 380, 122428.	6.6	43
245	Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties. Crystal Research and Technology, 2012, 47, 1032-1038.	0.6	42
246	Microporous Ni ₁₁ (HPO ₃) ₈ (OH) ₆ nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors. Dalton Transactions, 2014, 43, 17000-17005.	1.6	42
247	Facile one-step synthesis of Ag@CeO ₂ core–shell nanospheres with efficient catalytic activity for the reduction of 4-nitrophenol. CrystEngComm, 2017, 19, 684-689.	1.3	42
248	Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 420, 130518.	6.6	42
249	Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides. Chemical Communications, 2011, 47, 11772.	2.2	41
250	Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Mikrochimica Acta, 2014, 181, 1581-1589.	2.5	41
251	High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) ₂ Hybrid Nanosheet Films. ACS Applied Materials & Interfaces, 2018, 10, 38341-38349.	4.0	41
252	Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents. CrystEngComm, 2012, 14, 7330.	1.3	40

#	Article	IF	CITATIONS
253	New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. Materials Chemistry and Physics, 2015, 165, 207-214.	2.0	40
254	Exposing (0 0 1) crystal facet on the single crystalline β-Ni(OH)2 quasi-nanocubes for aqueous Ni-Zn batteries. Chemical Engineering Journal, 2021, 413, 127523.	6.6	40
255	Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Advances, 2016, 6, 39918-39925.	1.7	39
256	PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2019, 14, 2790-2795.	1.7	39
257	The synthesis of MOF derived carbon and its application in water treatment. Nano Research, 2022, 15, 6793-6818.	5.8	39
258	The Morphology Evolution of Nickel Phosphite Hexagonal Polyhedrons and Their Primary Electrochemical Capacitor Applications. Particle and Particle Systems Characterization, 2013, 30, 287-295.	1.2	38
259	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 422, 213468.	9.5	38
260	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	7.8	38
261	Fe-based phosphate nanostructures for supercapacitors. Chinese Chemical Letters, 2021, 32, 885-889.	4.8	38
262	Core–shell Co 11 (HPO 3) 8 (OH) 6 –Co 3 O 4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2015, 651, 214-221.	2.8	37
263	Electrospunâ€Technologyâ€Derived Highâ€Performance Electrochemical Energy Storage Devices. Chemistry - an Asian Journal, 2016, 11, 2967-2995.	1.7	37
264	Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium–Sulfur Batteries. Applied Sciences (Switzerland), 2017, 7, 1036.	1.3	37
265	Ultrathin Nanosheet Niâ€Metal Organic Framework Assemblies for Highâ€Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem, 2018, 5, 3859-3865.	1.7	37
266	Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chemical Engineering Journal, 2021, 416, 127884.	6.6	37
267	Ultrathin nanosheet metal–organic framework@NiO/Ni nanorod composites. Chemical Engineering Journal, 2021, 417, 129201.	6.6	37
268	Nitrogenâ€Ðoped Carbon–Copper Nanohybrids as Electrocatalysts in H ₂ O ₂ and Glucose Sensing. ChemElectroChem, 2014, 1, 799-807.	1.7	36
269	Porous dimanganese trioxide microflowers derived from microcoordinations for flexible solid-state asymmetric supercapacitors. Nanoscale, 2016, 8, 11689-11697.	2.8	36
270	Graphene/Co3O4 composites in application of electrochemical energy conversion and storage. FlatChem, 2019, 16, 100107.	2.8	36

#	Article	IF	CITATIONS
271	Ultrathin cobalt pyrophosphate nanosheets with different thicknesses for Zn-air batteries. Journal of Colloid and Interface Science, 2020, 563, 328-335.	5.0	36
272	Vanadiumâ€Based Materials as Positive Electrode for Aqueous Zincâ€Ion Batteries. Advanced Sustainable Systems, 2020, 4, 2000178.	2.7	36
273	Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. Journal of Energy Storage, 2020, 31, 101544.	3.9	36
274	Highâ€Performance Capacitive Deionization and Killing Microorganism in Surfaceâ€Water by ZIFâ€9 Derived Carbon Composites. Small Methods, 2021, 5, e2101070.	4.6	36
275	Recent Progress in Prussian Blue/Prussian Blue Analogue-Derived Metallic Compounds. Bulletin of the Chemical Society of Japan, 2022, 95, 230-260.	2.0	36
276	Nickelâ \in Based Materials for Advanced Rechargeable Batteries. Advanced Functional Materials, 2022, 32, .	7.8	36
277	Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode materials. RSC Advances, 2014, 4, 14872-14878.	1.7	35
278	Mesoporous hybrid NiO _x –MnO _x nanoprisms for flexible solid-state asymmetric supercapacitors. Dalton Transactions, 2016, 45, 10789-10797.	1.6	35
279	Phosphorus-based materials for high-performance rechargeable batteries. Inorganic Chemistry Frontiers, 2017, 4, 1424-1444.	3.0	35
280	Alternate Integration of Vertically Oriented CuSe@FeOOH and CuSe@MnOOH Hybrid Nanosheets Frameworks for Flexible In-Plane Asymmetric Micro-supercapacitors. ACS Applied Energy Materials, 2020, 3, 3692-3703.	2.5	35
281	Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chinese Chemical Letters, 2022, 33, 1412-1416.	4.8	35
282	Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. Journal of Solid State Electrochemistry, 2012, 16, 2883-2889.	1.2	34
283	A template method for synthesis of porous Sn-doped TiO2 monolith and its enhanced photocatalytic activity. Materials Letters, 2013, 93, 419-422.	1.3	34
284	Highly dispersed and stabilized nickel nanoparticle/silicon oxide/nitrogen-doped carbon composites for high-performance glucose electrocatalysis. Sensors and Actuators B: Chemical, 2019, 297, 126809.	4.0	34
285	Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries. Science China Chemistry, 2020, 63, 475-482.	4.2	34
286	CoP@SiO2nanoreactors: A core-shell structure for efficient electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2020, 31, 2300-2304.	4.8	34
287	Recent advances in two-dimensional materials for alkali metal anodes. Journal of Materials Chemistry A, 2021, 9, 5232-5257.	5.2	34
288	Applications of metal–organic framework–graphene composite materials in electrochemical energy storage. FlatChem, 2022, 32, 100332.	2.8	34

#	Article	IF	CITATIONS
289	Magnetite syntheses from room temperature to 150°C with and without microwaves. Ceramics International, 2012, 38, 2563-2568.	2.3	33
290	Hydrothermal Synthesis of Nickel Phosphate Nanorods for Highâ€Performance Flexible Asymmetric Allâ€Solidâ€State Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 880-885.	1.2	33
291	Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry. Chemical Engineering Journal, 2019, 372, 551-571.	6.6	33
292	Design and synthesis of transition metal oxide/zeolitic imidazolate framework-67 composites. Chemical Engineering Journal, 2022, 429, 132146.	6.6	33
293	Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. Inorganic Chemistry Frontiers, 2021, 8, 4222-4229.	3.0	33
294	Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chinese Chemical Letters, 2021, 32, 2909-2913.	4.8	32
295	Metal–organic frameworks-derived metal phosphides for electrochemistry application. Green Energy and Environment, 2022, 7, 636-661.	4.7	32
296	Framework materials for supercapacitors. Nanotechnology Reviews, 2022, 11, 1005-1046.	2.6	32
297	Wearable and antibacterial HPMC-anchored conductive polymer composite strain sensor with high gauge factors under small strains. Chemical Engineering Journal, 2022, 435, 135068.	6.6	31
298	Uniform M3PMo12O40·nH2O (M = NH4+, K+, Cs+) rhombic dodecahedral nanocrystals for effective antibacterial agents. Dalton Transactions, 2013, 42, 15637.	1.6	30
299	Copper-Based Nanomaterials for High-Performance Lithium-Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 784-810.	1.2	30
300	Nâ€Đoped Mesoporous ZnO with Oxygen Vacancies for Stable Hydrazine Electrocatalysis. ChemNanoMat, 2019, 5, 79-84.	1.5	30
301	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of Colloid and Interface Science, 2019, 537, 262-268.	5.0	30
302	Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability. Chinese Chemical Letters, 2021, 32, 3817-3820.	4.8	30
303	Construction of SiO /nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. Journal of Colloid and Interface Science, 2022, 606, 784-792.	5.0	30
304	TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts. Catalysis Communications, 2011, 12, 611-615.	1.6	29
305	Preparation ofÂN, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. RSC Advances, 2017, 7, 47448-47455.	1.7	29
306	Ultrathin Nanosheet Assembled Sn _{0.91} Co _{0.19} S ₂ Nanocages with Exposed (100) Facets for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, 1702184.	5.2	29

#	Article	IF	CITATIONS
307	Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage, 2019, 26, 101018.	3.9	29
308	Ultrathin nanosheet-assembled accordion-like Ni-MOF for hydrazine hydrate amperometric sensing. Mikrochimica Acta, 2020, 187, 168.	2.5	29
309	Porous Ni/NiO nanohybrids for electrochemical catalytic glucose oxidation. Chinese Chemical Letters, 2021, 32, 2017-2020.	4.8	29
310	Controlled fabrication and property studies of nickel hydroxide and nickel oxidenanostructures. CrystEngComm, 2010, 12, 1404-1409.	1.3	28
311	Microporous Carbon Nanofibers Derived from Poly(acrylonitrileâ€ <i>co</i> â€acrylic acid) for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2020, 26, 3326-3334.	1.7	28
312	CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 2330-2332.	4.8	28
313	Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation. Journal of Colloid and Interface Science, 2021, 589, 56-64.	5.0	28
314	Review on synthesis of porous TiO2-based catalysts for energy conversion systems. Ceramics International, 2021, 47, 25177-25200.	2.3	28
315	Cu superstructures hydrothermally reduced by leaves and derived Cu–Co ₃ O ₄ hybrids for flexible solid-state electrochemical energy storage devices. Journal of Materials Chemistry A, 2016, 4, 4840-4847.	5.2	27
316	Hatted 1T/2Hâ€Phase MoS ₂ on Ni ₃ S ₂ Nanorods for Efficient Overall Water Splitting in Alkaline Media. Chemistry - A European Journal, 2020, 26, 2034-2040.	1.7	27
317	Synthesis of 3D printing materials and their electrochemical applications. Chinese Chemical Letters, 2022, 33, 3681-3694.	4.8	27
318	Mesoporous Ni0.3Co2.7O4 hierarchical structures for effective non-enzymatic glucose detection. RSC Advances, 2014, 4, 33514-33519.	1.7	26
319	One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. Chemical Communications, 2019, 55, 9160-9163.	2.2	26
320	Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites. Chinese Chemical Letters, 2021, 32, 3123-3127.	4.8	26
321	Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. Journal of Colloid and Interface Science, 2022, 626, 1062-1069.	5.0	26
322	Electrochemical determination of glutathione based on an electrodeposited nickel oxide nanoparticles-modified glassy carbon electrode. Analytical Methods, 2013, 5, 1779.	1.3	25
323	High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. Journal of Solid State Electrochemistry, 2015, 19, 2177-2188.	1.2	25
324	A glassy carbon electrode modified with ordered nanoporous Co3O4 for non-enzymatic sensing of glucose. Mikrochimica Acta, 2017, 184, 943-949.	2.5	25

#	Article	IF	CITATIONS
325	Oxygen Vacancies Enhancing Electrocatalysis Performance of Porous Copper Oxide. Particle and Particle Systems Characterization, 2017, 34, 1600420.	1.2	25
326	Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. Applied Materials Today, 2020, 18, 100517.	2.3	25
327	Non-precious nickel-based catalysts for hydrogen oxidation reaction in alkaline electrolyte. Electrochemistry Communications, 2020, 121, 106871.	2.3	25
328	PPy-constructed core–shell structures from MOFs for confining lithium polysulfides. Inorganic Chemistry Frontiers, 2022, 9, 2389-2394.	3.0	25
329	One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. Rare Metals, 2017, 36, 457-464.	3.6	24
330	Development of Highâ€Voltage Aqueous Electrochemical Energy Storage Devices. Advanced Materials Interfaces, 2017, 4, 1700279.	1.9	24
331	Metal–Organic Frameworkâ€Based Sulfur‣oaded Materials. Energy and Environmental Materials, 2022, 5, 215-230.	7.3	24
332	Encapsulation of NiCo nanoparticles into foam-like porous N,P-codoped carbon nanosheets: Electronic and architectural dual regulations toward high-efficiency water electrolysis. Chemical Engineering Journal, 2021, 410, 128325.	6.6	24
333	Cyanide-metal framework derived porous MoO3-Fe2O3 hybrid micro- octahedrons as superior anode for lithium-ion batteries. Chemical Engineering Journal, 2021, 426, 130347.	6.6	24
334	Nickel hydroxide–nickel nanohybrids indirectly from coordination microfibers for high-performance supercapacitor electrodes. Inorganic Chemistry Frontiers, 2015, 2, 129-135.	3.0	23
335	The State of Research Regarding Ordered Mesoporous Materials in Batteries. Small, 2019, 15, e1804600.	5.2	23
336	SiO -based (0 < x â‰ ¤ €‰2) composites for lithium-ion batteries. Chinese Chemical Letters, 202	20,438,65	4-6 £\$.
337	Ultrasmall metal (Fe, Co, Ni) nanoparticles strengthen silicon oxide embedded nitrogen-doped carbon superstructures for long-cycle-life Li-ion-battery anodes. Chemical Engineering Journal, 2022, 432, 134413.	6.6	23
338	In-Situ growth of MnO2 nanoflakes on Co3V2O8 generating a hollow hexahedron: Zn-storage properties, and investigation of electrochemical mechanism. Chemical Engineering Journal, 2022, 440, 135931.	6.6	23
339	Synthesis of Tostadasâ€Shaped Metalâ€Organic Frameworks for Remitting Capacity Fading of Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
340	Controllable synthesis and electrochemical capacitor performance of MOF-derived MnO _x /N-doped carbon/MnO ₂ composites. Inorganic Chemistry Frontiers, 2019, 6, 2873-2884.	3.0	22
341	Mesoporous NH4NiPO4·H2O for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. Frontiers in Chemistry, 2019, 7, 118.	1.8	22
342	Application of graphene-metal/conductive polymer based composites in supercapacitors✰. Journal of Energy Storage, 2021, 33, 102037.	3.9	22

#	Article	IF	CITATIONS
343	General synthesis of nitrogen-doped metal (MÂ=ÂCo2+, Mn2+, Ni2+, or Cu2+) phosphates. Chemical Engineering Journal, 2021, 411, 128544.	6.6	22
344	Facile synthesis of sub-10Ânm ZnS/ZnO nanoflakes for high-performance flexible triboelectric nanogenerators. Nano Energy, 2021, 88, 106256.	8.2	22
345	Zeolitic Imidazolate Framework-67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione. Particle and Particle Systems Characterization, 2015, 32, 429-433.	1.2	21
346	Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. Journal of Colloid and Interface Science, 2022, 607, 1898-1907.	5.0	21
347	Assembling CdS mesoporous nanosheets into 3D hierarchitectures for effective photocatalytic performance. Dalton Transactions, 2014, 43, 5687-5693.	1.6	20
348	Electrocatalysis of Rechargeable Non‣ithium Metal–Air Batteries. Advanced Materials Interfaces, 2017, 4, 1700589.	1.9	20
349	Fabrication of defect-rich bifunctional hollow NiTe2 nanotubes for high performance hydrogen evolution electrocatalysts and supercapacitors. Journal of Energy Storage, 2021, 42, 103098.	3.9	20
350	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
351	Directional Growth of Conductive Metal–Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 25878-25885.	4.0	20
352	One-step fabrication of Cd(OH)2 nanorings via a solution phase synthesis. Chemical Communications, 2010, 46, 6183.	2.2	19
353	Facile synthesis of mono-dispersive hierarchical nickel-based microspheres as potential catalysts. Catalysis Communications, 2011, 12, 1031-1036.	1.6	19
354	Porous Mn3[Co(CN)6]2·nH2O nanocubes as a rapid organic dyes adsorption material. RSC Advances, 2012, 2, 9614.	1.7	19
355	Synthesis of lithium metal silicates for lithium ion batteries. Chinese Chemical Letters, 2017, 28, 2195-2206.	4.8	19
356	Three-dimensional Co2V2O7•nH2O superstructures assembled by nanosheets for electrochemical energy storage. Chinese Chemical Letters, 2022, 33, 462-465.	4.8	19
357	Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors. ChemistryOpen, 2015, 4, 32-38.	0.9	18
358	Single-Crystalline Hyperbranched Nanostructure of Iron Hydroxyl Phosphate Fe5(PO4)4(OH)3·2H2O for Highly Selective Capture of Phosphopeptides. Scientific Reports, 2014, 4, 3753.	1.6	18
359	Synthesis of Iron Phosphate and Their Composites for Lithium/Sodium Ion Batteries. Advanced Sustainable Systems, 2018, 2, 1700154.	2.7	18
360	Ultrathin Ni-MOF Nanobelts-Derived Composite for High Sensitive Detection of Nitrite. Frontiers in Chemistry, 2020, 8, 330.	1.8	18

#	Article	IF	CITATIONS
361	Synthesis of nickel-metal organic framework nanoplates with pyridine modulation and application to supercapacitors. Journal of Energy Storage, 2021, 38, 102528.	3.9	18
362	Layered V-MOF nanorods for rechargeable aqueous zinc-ion batteries. Materials Today Chemistry, 2021, 21, 100513.	1.7	18
363	Turning coordination environment of 2D nickel-based metal-organic frameworks by π-conjugated molecule for enhancing glucose electrochemical sensor performance. Materials Today Chemistry, 2022, 24, 100885.	1.7	18
364	Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chinese Chemical Letters, 2023, 34, 107527.	4.8	18
365	Facile synthesis of Ni3(BO3)2 nanoribbons and their antimicrobial, electrochemical and electrical properties. Journal of Materials Chemistry, 2011, 21, 13889.	6.7	17
366	Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers. Sensors, 2012, 12, 15078-15087.	2.1	17
367	Ultrathin Cerium Orthovanadate Nanobelts for Highâ€Performance Flexible Allâ€Solidâ€State Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 338-343.	1.7	17
368	Facile synthesis of Mn ₃ [Co(CN) ₆] ₂ ·nH ₂ O nanocrystals for high-performance electrochemical energy storage devices. Inorganic Chemistry Frontiers, 2017, 4, 442-449.	3.0	17
369	Some MoS ₂ -based materials for sodium-ion battery. Functional Materials Letters, 2018, 11, 1840004.	0.7	17
370	A Hierarchically Porous ZIF@LDH Coreâ€Shell Structure for Highâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2021, 16, 845-849.	1.7	17
371	Concentration as a trigger to improve electrocatalytic activity of a Prussian blue analogue in glucose oxidation. CrystEngComm, 2019, 21, 5455-5460.	1.3	16
372	Morphology and size controlled synthesis of Co-doped MIL-96 by different alkaline modulators for sensitively detecting alpha-fetoprotein. Chinese Chemical Letters, 2020, 31, 2263-2267.	4.8	16
373	A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. Chinese Chemical Letters, 2022, 33, 3249-3254.	4.8	16
374	In Situ Generation of NiCoP Nanoparticles on a Bimetal–Organic Framework for High-Performance Supercapacitors. Inorganic Chemistry, 2022, 61, 10435-10441.	1.9	16
375	Flexible Supercapacitors: A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Selfâ€Transformation (Adv. Mater. 26/2016). Advanced Materials, 2016, 28, 5241-5241.	11.1	15
376	Derivatives (Cu/CuO, Cu/Cu2O, and CuS) of Cu superstructures reduced by biomass reductants. Materials Today Chemistry, 2021, 21, 100519.	1.7	15
377	Nickel sulfide nanorods decorated on graphene as advanced hydrogen evolution electrocatalysts in acidic and alkaline media. Journal of Colloid and Interface Science, 2022, 608, 2633-2640.	5.0	15
378	A Review of Metal–Organic Frameworkâ€Based Compounds for Environmental Applications. Energy and Environmental Materials, 2023, 6, .	7.3	15

#	Article	IF	CITATIONS
379	Highâ€Performance Flexible Solidâ€State Asymmetric Supercapacitors based on Ordered Mesoporous Cobalt Oxide. Energy Technology, 2017, 5, 544-548.	1.8	14
380	Our Contributions in Nanochemistry for Antibiosis, Electrocatalyst and Energy Storage Materials. Chemical Record, 2018, 18, 91-104.	2.9	14
381	Synthesis of Co _{0.5} Mn _{0.1} Ni _{0.4} C ₂ O ₄ â< <i>n</i> 倉H <sul Micropolyhedrons: Multimetal Synergy for Highâ€Performance Glucose Oxidation Catalysis. Chemistry - an Asian Journal. 2019. 14. 2259-2265.</sul 	0>2 1.7	0 ₁₄
382	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	6.6	14
383	Achieving Highâ€Performance Supercapacitors by Constructing Porous Zinc–Manganese Oxide Microstructures. Energy Technology, 2015, 3, 820-824.	1.8	13
384	Controllable synthesis of copper ion guided MIL-96 octadecahedron: highly sensitive aptasensor toward alpha-fetoprotein. Applied Materials Today, 2020, 20, 100745.	2.3	13
385	Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution. Chinese Chemical Letters, 2021, 32, 2239-2242.	4.8	13
386	Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater. Materials Today Chemistry, 2022, 23, 100705.	1.7	13
387	A coordination cage hosting ultrafine and highly catalytically active gold nanoparticles. Chemical Science, 2022, 13, 461-468.	3.7	13
388	<scp><scp>ZrO</scp></scp> ₂ / <scp><scp>Dy</scp>22</scp>	0> _{3 1.9}	 12
389	Hierarchical Bimetallic Hydroxides Built by Porous Nanowire‣apped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900959.	1.9	12
390	Regulation of the Ni2+ Content in a Hierarchical Urchin-Like MOF for High-Performance Electrocatalytic Oxygen Evolution. Frontiers in Chemistry, 2019, 7, 411.	1.8	12
391	γ-MnOOH Nanowires Hydrothermally Reduced by Leaves for High-Efficiency Electrocatalysis of the Glucose Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8972-8978.	3.2	12
392	Nickel/Cobalt phosphate ultrathin nanosheets grown on the surface of Fe(PO3)3 nanosheets for high performance supercapacitors. Journal of Energy Storage, 2021, 42, 103082.	3.9	12
393	Metal-organic frameworks marry carbon: Booster for electrochemical energy storage. Journal of Energy Storage, 2022, 53, 105104.	3.9	12
394	Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous Nickel-Zinc battery. Journal of Colloid and Interface Science, 2022, 627, 483-491.	5.0	12
395	CdTe/PEDOT-PSS hybrid microspheres: Facile fabrication and multiple-color pH-sensing. Polymer, 2011, 52, 2542-2549.	1.8	11
396	Controllable synthesis of a flower-like superstructure of nickel metal-organic phosphate and its derivatives for supercapacitors. Applied Materials Today, 2021, 23, 101048.	2.3	11

#	Article	IF	CITATIONS
397	Preparation of Hollow Core–Shell Fe3O4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules, 2022, 27, 396.	1.7	11
398	Recent progress and challenges in plasmonic nanomaterials. Nanotechnology Reviews, 2022, 11, 846-873.	2.6	11
399	Hierarchical Cobaltâ€Nickel Double Hydroxide Arrays Assembled on Naturally Sedimented Ti ₃ C ₂ T _x for Highâ€Performance Flexible Supercapacitors. Advanced Sustainable Systems, 2022, 6, .	2.7	11
400	Self-assembly Synthesis of High-density Platinum Nanoparticles on Chemically Reduced Graphene Sheets. Chemistry Letters, 2011, 40, 104-105.	0.7	10
401	Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging. Nanoscale Research Letters, 2014, 9, 115.	3.1	10
402	Amorphous Cobalt Coordination Nanolayers Incorporated with Silver Nanowires: A New Electrode Material for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1600412.	1.2	10
403	Nickelâ€Based Sulfide Materials for Batteries. ChemistrySelect, 2018, 3, 12967-12986.	0.7	10
404	Printable electrode materials for supercapacitors. ChemPhysMater, 2022, 1, 17-38.	1.4	10
405	Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1091-1099.	3.0	10
406	Electrochemical activation-induced surface-reconstruction of NiOx microbelt superstructure of core–shell nanoparticles for superior durability electrocatalysis. Journal of Colloid and Interface Science, 2022, 624, 443-449.	5.0	10
407	Deposition of Nanostructured Fluorineâ€Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray. Journal of the American Ceramic Society, 2016, 99, 2899-2904.	1.9	9
408	Studies on the structural stability of Co2P2O7 under pressure. Journal of Physics and Chemistry of Solids, 2018, 116, 113-117.	1.9	9
409	VOx/VSx@Graphene nanocomposites for electrochemical energy storage. Chemical Engineering Journal, 2021, 404, 126310.	6.6	9
410	Ultrathin One-Dimensional Ni-MIL-77 Nanobelts for High-Performance Electrocatalytic Urea Evolution. Crystal Growth and Design, 2021, 21, 3639-3644.	1.4	9
411	Recent advances in metal organic frameworks and their composites for batteries. Nano Futures, 2020, 4, 032007.	1.0	9
412	Ferric Phosphate Hydroxide Microcrystals for Highly Efficient Visibleâ€Lightâ€Driven Photocatalysts. ChemPhysChem, 2013, 14, 2518-2524.	1.0	8
413	Template-free synthesis of hierarchically porous NaCoPO ₄ –Co ₃ O ₄ hollow microspheres and their application as electrocatalysts for glucose. CrystEngComm, 2015, 17, 4540-4546.	1.3	8
414	Easy fabrication of ultralight CNx foams with application as absorbents and continuous flow oil–water separation. Materials Today Communications, 2015, 4, 116-123.	0.9	8

#	Article	IF	CITATIONS
415	Facile Synthesis of Polypyrrole Nanotubes and Their Supercapacitive Application. International Journal of Electrochemical Science, 2017, , 9320-9334.	0.5	7
416	Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 2019, 6, 4922-4948.	1.7	7
417	Hydrothermal synthesis of Î ³ -MnOOH nanowires using sapless leaves as the reductant: an effective catalyst for the regio-specific epoxidation of Î ² -ionone. Sustainable Energy and Fuels, 2019, 3, 2572-2576.	2.5	7
418	A Honeycombâ€Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie, 2020, 132, 19795-19800.	1.6	7
419	Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Science China Materials, 2021, 64, 1556-1562.	3.5	7
420	Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties. ChemistryOpen, 2015, 4, 274-277.	0.9	6
421	The mitochondrial genome of the Chinese special butterflyLuehdorfia chinensisLeech (Lepidoptera:) Tj ETQq1 1 0	.784314 0.6	rg&T /Overlo
422	Aluminum-based materials for advanced battery systems. Science China Materials, 2017, 60, 577-607.	3.5	5
423	Synthesis of Ni ₄ Yb(OH) ₁₀ NO ₃ â‹â€‰3H ₂ O Nanoshe Electrode Materials in Electrochemical Energy Storage. ChemElectroChem, 2018, 5, 3150-3154.	ets for	5
424	Zirconiumâ€Based Materials for Electrochemical Energy Storage. ChemElectroChem, 2019, 6, 1949-1968.	1.7	5
425	Formation of conductive MOF@Metal oxide micro-nano composites via facile self-assembly for high-performance supercapacitors. Materials Today Chemistry, 2022, 26, 101024.	1.7	5
426	Bi-directional-bi-dimensionality alignment of self-supporting Mn3O4 nanorod and nanotube arrays with different bacteriostasis and magnetism. Nanoscale, 2013, 5, 12231.	2.8	4
427	Flexible All-Solid-State Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Polyacrylonitrile Copolymer. ACS Applied Energy Materials, 2021, 4, 5830-5839.	2.5	4
428	Ni75Cu25O polyhedron material derived from nickel-copper oxalate as high-performance electrocatalyst for glucose oxidation. Composites Communications, 2022, 29, 100999.	3.3	4
429	Copper sulfides and their composites for high-performance rechargeable batteries. Materials Today Chemistry, 2022, 23, 100675.	1.7	4
430	Magnetic field-assisted hydrothermal synthesis of magnetic microwire arrays. Chemical Physics Letters, 2009, 482, 118-120.	1.2	3
431	Sandwich-Type Polymer Nanofiber Structure of Poly(furfuryl Alcohol): An Effective Template for Ordered Porous Films. Journal of Physical Chemistry B, 2009, 113, 12477-12481.	1.2	3
432	Fabrication of Cu3V2O7(OH)2·2H2O Nanoribbons and Cu3V2O7(OH)2·2H2O/PANI Nanocomposites Used in Supercapacitors. Chemistry Letters, 2010, 39, 192-193.	0.7	3

#	Article	IF	CITATIONS
433	Frontispiece: Twoâ€Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry - A European Journal, 2020, 26, .	1.7	3
434	Direct preparation of hierarchical macroporous <i>\hat{l}^2</i> -SiC using SiO ₂ opal as both template and precursor and its application in water splitting. Materials Technology, 2016, 31, 526-531.	1.5	2
435	Facile Synthesis of Zn/Nâ€doped CuO and Their Application in Oxygen Evolution Reaction. ChemistrySelect, 2018, 3, 12205-12209.	0.7	2
436	Nanoreactors derived from silica-protection-assisted metal-organic framework. Chinese Chemical Letters, 2020, 31, 2207-2210.	4.8	2
437	Rational design of self-sacrificial template derived quasi-Cu-MOF composite as anodes for high-performance lithium-ion batteries. Chinese Chemical Letters, 2023, 34, 107675.	4.8	2
438	Facile control synthesis of Ag3PO4 and morphologies effects on their photocatalytic properties. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 67-69.	0.1	1
439	Synthesis of Porous Cubic Nickel Oxide Nanostructures and their Electrochemical Property. Advanced Materials Research, 2012, 557-559, 628-631.	0.3	1
440	Cubic-Like Nickel Oxide Nanostructures as Large Specific Capacitance and Long-Life Supercapacitors. Advanced Materials Research, 2012, 516-517, 1688-1691.	0.3	1
441	Nanomaterials for Supercapacitors. , 2020, , 195-220.		1
442	Frontispiece: Current Advances in Semiconductor Nanomaterialâ€Based Photoelectrochemical Biosensing. Chemistry - A European Journal, 2018, 24, .	1.7	0
443	Brief Overview of Next-Generation Batteries. SpringerBriefs in Materials, 2020, , 35-51.	0.1	0
444	Nano/Micro MOF-Based Materials. , 2021, , 1-40.		0
445	One-Dimensional/One-Dimensional Analogue TMOs for Advanced Batteries. SpringerBriefs in Materials, 2020, , 53-70.	0.1	0
446	Synthetic Strategies for One-Dimensional/One-Dimensional Analogue Nanomaterials. SpringerBriefs in Materials, 2020, , 1-18.	0.1	0
447	Synthesis of Three-Dimensional Nanomaterials. , 2020, , 79-105.		0
448	Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes. Chinese Chemical Letters, 2023, 34, 107447.	4.8	0