
Zahara M De Pedro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4942090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 2015, 176-177, 249-265.	20.2	593
2	Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials, 2011, 190, 993-1000.	12.4	109
3	Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Applied Catalysis B: Environmental, 2011, 103, 128-135.	20.2	89
4	Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling. Chemosphere, 2021, 283, 131085.	8.2	79
5	A ferromagnetic Î ³ -alumina-supported iron catalyst for CWPO. Application to chlorophenols. Applied Catalysis B: Environmental, 2013, 136-137, 218-224.	20.2	77
6	Triclosan breakdown by Fenton-like oxidation. Chemical Engineering Journal, 2012, 198-199, 275-281.	12.7	64
7	Ionic liquids breakdown by Fenton oxidation. Catalysis Today, 2015, 240, 16-21.	4.4	64
8	Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. Journal of Hazardous Materials, 2017, 331, 45-54.	12.4	64
9	Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Applied Catalysis B: Environmental, 2017, 203, 166-173.	20.2	61
10	Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chemical Engineering Journal, 2015, 264, 856-862.	12.7	60
11	Application of intensified Fenton oxidation to the treatment of sawmill wastewater. Chemosphere, 2014, 109, 34-41.	8.2	57
12	Gas phase hydrogenation of nitroarenes: A comparison of the catalytic action of titania supported gold and silver. Journal of Molecular Catalysis A, 2010, 326, 48-54.	4.8	53
13	Hydrodechlorination of dichloromethane with a Pd/AC catalyst: Reaction pathway and kinetics. Applied Catalysis B: Environmental, 2010, 98, 79-85.	20.2	53
14	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	3.2	53
15	A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater. Journal of Environmental Management, 2021, 290, 112624.	7.8	47
16	Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd–Fe/γ-Al2O3 catalyst. Water Research, 2013, 47, 3070-3080.	11.3	45
17	Gas-Phase Hydrodechlorination of Dichloromethane at Low Concentrations with Palladium/Carbon Catalysts. Industrial & Engineering Chemistry Research, 2006, 45, 7760-7766.	3.7	38
18	Chlorinated Byproducts from the Fenton-like Oxidation of Polychlorinated Phenols. Industrial & Engineering Chemistry Research, 2012, 51, 13092-13099.	3.7	36

Zahara M De Pedro

#	Article	IF	CITATIONS
19	Role of the chemical structure of ionic liquids in their ecotoxicity and reactivity towards Fenton oxidation. Separation and Purification Technology, 2015, 150, 252-256.	7.9	36
20	Improved γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols. Applied Catalysis A: General, 2014, 488, 78-85.	4.3	35
21	Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. Journal of Environmental Chemical Engineering, 2017, 5, 4337-4343.	6.7	35
22	Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catalysis Today, 2018, 313, 142-147.	4.4	32
23	Polymer-based spherical activated carbon as catalytic support for hydrodechlorination reactions. Applied Catalysis B: Environmental, 2017, 218, 498-505.	20.2	31
24	Degradation of widespread cyanotoxins with high impact in drinking water (microcystins,) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 542 Td
25	Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, 2021, 761, 143197.	8.0	30
26	Fast degradation of diclofenac by catalytic hydrodechlorination. Chemosphere, 2018, 213, 141-148.	8.2	28
27	Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 2013, 228, 646-654.	12.7	25
28	Fast oxidation of the neonicotinoid pesticides listed in the EU Decision 2018/840 from aqueous solutions. Separation and Purification Technology, 2020, 235, 116168.	7.9	25
29	Palladium-based Catalytic Membrane Reactor for the continuous flow hydrodechlorination of chlorinated micropollutants. Applied Catalysis B: Environmental, 2021, 293, 120235.	20.2	23
30	Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC–CWPO) for the abatement of organochlorinated water pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 197-203.	20.2	22
31	Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. Journal of Chemical Technology and Biotechnology, 2016, 91, 2882-2887.	3.2	18
32	CWPO intensification by induction heating using magnetite as catalyst. Journal of Environmental Chemical Engineering, 2020, 8, 104085.	6.7	17
33	Catalytic hydrodechlorination as polishing step in drinking water treatment for the removal of chlorinated micropollutants. Separation and Purification Technology, 2019, 227, 115717.	7.9	16
34	Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2. Chemical Engineering Journal, 2019, 376, 120265.	12.7	15
35	Carbon supported gold and silver: Application in the gas phase hydrogenation of m -dinitrobenzene. Journal of Molecular Catalysis A, 2015, 408, 138-146.	4.8	14
36	Boosting the catalytic activity of natural magnetite for wet peroxide oxidation. Environmental Science and Pollution Research, 2020, 27, 1176-1185.	5.3	13

Zahara M De Pedro

#	Article	IF	CITATIONS
37	Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34811-34817.	5.3	10
38	Catalytic Hydrodehalogenation of Haloacetic Acids: A Kinetic Study. Industrial & Engineering Chemistry Research, 2020, 59, 17779-17785.	3.7	7
39	Catalytic Wet Peroxide Oxidation of Cylindrospermopsin over Magnetite in a Continuous Fixed-Bed Reactor. Catalysts, 2020, 10, 1250.	3.5	6
40	On the deactivation and regeneration of Pd/Al2O3 catalyst for aqueous-phase hydrodechlorination of diluted chlorpromazine solution. Catalysis Today, 2020, 356, 255-259.	4.4	5
41	Innovative iron oxide foams for the removal of micropollutants by Catalytic Wet Peroxide Oxidation: Assessment of long-term operation under continuous mode. Journal of Environmental Chemical Engineering, 2021, 9, 105914.	6.7	5
42	Catalyst deactivation in the hydrodechlorination of micropollutants. A case of study with neonicotinoid pesticides. Journal of Water Process Engineering, 2020, 38, 101550.	5.6	3
43	Catalytic hydrodehalogenation of the flame retardant tetrabromobisphenol A by alumina-supported Pd, Rh and Pt catalysts. Chemical Engineering Journal Advances, 2022, 9, 100212.	5.2	2
44	Application of catalytic hydrodehalogenation in drinking water treatment for organohalogenated micropollutants removal: A review. Journal of Hazardous Materials Advances, 2022, 5, 100047.	3.0	1