K C â€**‰**nt Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941935/publications.pdf

Version: 2024-02-01

75 papers 4,664 citations

201385 27 h-index 63 g-index

82 all docs 82 docs citations

times ranked

82

9046 citing authors

#	Article	IF	CITATIONS
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	13.7	1,001
2	The Knockout Mouse Project. Nature Genetics, 2004, 36, 921-924.	9.4	556
3	Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nature Methods, 2009, 6, 493-495.	9.0	340
4	The mammalian gene function resource: the international knockout mouse consortium. Mammalian Genome, 2012, 23, 580-586.	1.0	292
5	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	9.4	216
6	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	5.8	200
7	Deficiency of microRNA <i>miR-34a</i> expands cell fate potential in pluripotent stem cells. Science, 2017, 355, .	6.0	129
8	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	5.8	116
9	Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes and Development, 2017, 31, 1243-1256.	2.7	97
10	Efficient mouse genome engineering by CRISPR-EZ technology. Nature Protocols, 2018, 13, 1253-1274.	5 . 5	95
11	Generating mouse models for biomedical research: technological advances. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	93
12	PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models. Cancer Research, 2017, 77, e62-e66.	0.4	92
13	A metabolome atlas of the aging mouse brain. Nature Communications, 2021, 12, 6021.	5.8	91
14	Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nature Genetics, 2018, 50, 120-129.	9.4	86
15	The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conservation Genetics, 2018, 19, 995-1005.	0.8	82
16	Applying the ARRIVE Guidelines to an In Vivo Database. PLoS Biology, 2015, 13, e1002151.	2.6	75
17	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	3.8	69
18	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	5.8	64

#	Article	IF	CITATIONS
19	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	9.4	60
20	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	5.8	59
21	A knockout mouse resource for the biomedical research community. Annals of the New York Academy of Sciences, 2011, 1245, 24-26.	1.8	58
22	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	1.2	58
23	A Comprehensive Plasma Metabolomics Dataset for a Cohort of Mouse Knockouts within the International Mouse Phenotyping Consortium. Metabolites, 2019, 9, 101.	1.3	40
24	The Influence of Shc Proteins on Life Span in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1177-1185.	1.7	37
25	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	2.0	37
26	Therapy in two cases of neonatal foal septicaemia and meningitis with cefotaxime sodium. Equine Veterinary Journal, 1987, 19, 151-154.	0.9	36
27	A Population Study of Common Ocular Abnormalities in C57BL/6N <i>rd8</i> Mice., 2018, 59, 2252.		31
28	High Osmolality Vitrification: A New Method for the Simple and Temperature-Permissive Cryopreservation of Mouse Embryos. PLoS ONE, 2013, 8, e49316.	1.1	31
29	Development of outbred CD1 mouse colonies with distinct standardized gut microbiota profiles for use in complex microbiota targeted studies. Scientific Reports, 2018, 8, 10107.	1.6	30
30	The Deep Genome Project. Genome Biology, 2020, 21, 18.	3.8	30
31	A <i>lacZ</i> reporter gene expression atlas for 313 adult KOMP mutant mouse lines. Genome Research, 2015, 25, 598-607.	2.4	29
32	Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression. PLoS Genetics, 2016, 12, e1005691.	1.5	28
33	Centralized mouse repositories. Mammalian Genome, 2012, 23, 559-571.	1.0	25
34	Reproducibility: Use mouse biobanks or lose them. Nature, 2015, 522, 151-153.	13.7	24
35	Response to "Unexpected mutations after CRISPR–Cas9 editing in vivo― Nature Methods, 2018, 15, 235-236.	9.0	24
36	Duodenal loading with glucose induces Fos expression in rat brain: selective blockade by devazepide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R667-R674.	0.9	23

#	Article	IF	Citations
37	Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Research, 2017, 26, 263-277.	1.3	22
38	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. , 2022, 1, 157-173.		22
39	DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice. Scientific Reports, 2020, 10, 3833.	1.6	20
40	Animal-based studies will be essential for precision medicine. Science Translational Medicine, 2016, 8, 352ed12.	5.8	19
41	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	1.5	19
42	Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. Cryobiology, 2014, 68, 12-17.	0.3	18
43	Supplier-origin mouse microbiomes significantly influence locomotor and anxiety-related behavior, body morphology, and metabolism. Communications Biology, 2021, 4, 716.	2.0	15
44	The Mutant Mouse Resource and Research Center (MMRRC): the NIH-supported National Public Repository and Distribution Archive of Mutant Mouse Models in the USA. Mammalian Genome, 2022, 33, 203-212.	1.0	13
45	Validation of Simple Sequence Length Polymorphism Regions of Commonly Used Mouse Strains for Marker Assisted Speed Congenics Screening. International Journal of Genomics, 2015, 2015, 1-17.	0.8	12
46	Precision medicine: Look to the mice. Science, 2015, 349, 390-390.	6.0	11
47	On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E47-E62.	1.8	11
48	<i>Arap1</i> Deficiency Causes Photoreceptor Degeneration in Mice., 2017, 58, 1709.		10
49	High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genetics, 2020, 16, e1008577.	1.5	10
50	Cryorecovery of Mouse Sperm by Different IVF Methods Using MBCD and GSH. Journal of Fertilization in Vitro IVF Worldwide Reproductive Medicine Genetics & Stem Cell Biology, 2016, 04, .	0.2	9
51	Phenotypic analysis of C57BL/6J and FVB/NJ mice generated using evaporatively dried spermatozoa. Comparative Medicine, 2007, 57, 469-75.	0.4	9
52	Cytoglobin deficiency potentiates Crb1-mediated retinal degeneration in rd8 mice. Developmental Biology, 2020, 458, 141-152.	0.9	7
53	Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E63-E79.	1.8	7
54	Intracytoplasmic sperm injection (ICSI) enables rescue of valuable mutant mouse strains. Comparative Medicine, 2003, 53, 265-9.	0.4	7

#	Article	IF	CITATIONS
55	Genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function. Scientific Reports, 2019, 9, 11211.	1.6	6
56	IVF recovery of mutant mouse lines using sperm cryopreserved with mtg in cryovials. Cryo-Letters, 2014, 35, 145-53.	0.1	6
57	Acid inhibition by intestinal nutrients mediated by CCK-A receptors but not plasma CCK. American Journal of Physiology - Renal Physiology, 2001, 281, G924-G930.	1.6	5
58	A novel DPH5-related diphthamide-deficiency syndrome causing embryonic lethality or profound neurodevelopmental disorder. Genetics in Medicine, 2022, 24, 1567-1582.	1.1	5
59	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	3.8	4
60	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain, 2022, 163, 1139-1157.	2.0	4
61	Rederivation of transgenic mice from iPS cells derived from frozen tissue. Transgenic Research, 2011, 20, 167-175.	1.3	3
62	Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation. PLoS ONE, 2015, 10, e0134155.	1.1	3
63	Injection Reactions after Administration of Sustained-release Meloxicam to BALB/cJ, C57BL/6J, and Crl:CD1(ICR) Mice. Journal of the American Association for Laboratory Animal Science, 2021, 60, 176-183.	0.6	3
64	Hypoglycemia after Bariatric Surgery in Mice and Optimal Dosage and Efficacy of Glucose Supplementation. Comparative Medicine, 2020, 70, 111-118.	0.4	3
65	The Scientific Component of Residency Training. Journal of Veterinary Medical Education, 2008, 35, 53-57.	0.4	2
66	Combining sperm plug genotyping and coat color chimerism predicts germline transmission. Transgenic Research, 2013, 22, 1265-1272.	1.3	2
67	Rescue of germline transmission from chimeras by IVF after sperm analysis. Transgenic Research, 2015, 24, 99-108.	1.3	2
68	Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. Npj Systems Biology and Applications, 2021, 7, 25.	1.4	2
69	Retinal degeneration in mice and humans with neuronal ceroid lipofuscinosis type 8. Annals of Translational Medicine, 2021, 9, 1274-1274.	0.7	2
70	Mercury-free mouse ICSI with rotationally oscillating drill (Ros-Drill [©])., 2009,,.		0
71	Comment on "One health, one literature: Weaving together veterinary and medical research― Science Translational Medicine, 2015, 7, 317le3.	5.8	0
72	High-throughput discovery of genetic determinants of circadian misalignment., 2020, 16, e1008577.		0

#	Article	IF	CITATIONS
73	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		O
74	High-throughput discovery of genetic determinants of circadian misalignment., 2020, 16, e1008577.		0
75	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		O