Henning Kage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941626/publications.pdf

Version: 2024-02-01

201674 223800 2,720 98 27 46 h-index citations g-index papers 99 99 99 3062 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Apparent fertilizer N recovery and the relationship between grain yield and grain protein concentration of different winter wheat varieties in a long-term field trial. European Journal of Agronomy, 2021, 124, 126246.	4.1	16
2	Sentinel-2 Data for Precision Agriculture?—A UAV-Based Assessment. Sensors, 2021, 21, 2861.	3.8	15
3	Model sensitivity of simulated yield of winter oilseed rape to climate change scenarios in Europe. European Journal of Agronomy, 2021, 129, 126341.	4.1	6
4	Organ-specific critical N dilution curves and derived NNI relationships for winter wheat, winter oilseed rape and maize. European Journal of Agronomy, 2021, 130, 126365.	4.1	9
5	Festschrift zum 75. JubilÄum der Agrar- und ErnĤrungswissenschaftlichen FakultÄuder Christian-Albrechts-UniversitÄuzu Kiel (1946-2021). , 2021, , .		O
6	Development and evaluation of HUME-OSR: A dynamic crop growth model for winter oilseed rape. Field Crops Research, 2020, 246, 107679.	5.1	6
7	Is canopy temperature suitable for high throughput field phenotyping of drought resistance of winter rye in temperate climate?. European Journal of Agronomy, 2020, 120, 126104.	4.1	4
8	Yield potential of non-bolting winter sugar beet in Germany. European Journal of Agronomy, 2020, 115, 126035.	4.1	2
9	Decoupling of impact factors reveals the response of German winter wheat yields to climatic changes. Global Change Biology, 2020, 26, 3601-3626.	9.5	35
10	Indirect nitrous oxide emissions from oilseed rape cropping systems by NH3 volatilization and nitrate leaching as affected by nitrogen source, N rate and site conditions. European Journal of Agronomy, 2020, 116, 126039.	4.1	21
11	Breeding improves wheat productivity under contrasting agrochemical input levels. Nature Plants, 2019, 5, 706-714.	9.3	194
12	Evaluating the potential of winter beet in northern Germany by a simulation model. European Journal of Agronomy, 2019, 109, 125910.	4.1	3
13	Effects of freeâ€air CO 2 enrichment and drought on root growth of field grown maize and sorghum. Journal of Agronomy and Crop Science, 2019, 205, 477-489.	3.5	4
14	The Contribution of Functional Traits to the Breeding Progress of Central-European Winter Wheat Under Differing Crop Management Intensities. Frontiers in Plant Science, 2019, 10, 1521.	3.6	15
15	High-Throughput Prediction of Whole Season Green Area Index in Winter Wheat With an Airborne Multispectral Sensor. Frontiers in Plant Science, 2019, 10, 1798.	3.6	14
16	Key variables for simulating leaf area and N status: Biomass based relations versus phenology driven approaches. European Journal of Agronomy, 2018, 100, 110-117.	4.1	21
17	Do farmers in Germany exploit the potential yield and nitrogen benefits from preceding oilseed rape in winter wheat cultivation?. Archives of Agronomy and Soil Science, 2018, 64, 25-37.	2.6	34
18	Predicting the site specific soil N supply under winter wheat in Germany. Nutrient Cycling in Agroecosystems, 2018, 110, 71-81.	2.2	5

#	Article	IF	Citations
19	Effects of novel nitrification and urease inhibitors (DCD/TZ and 2-NPT) on N2O emissions from surface applied urea: An incubation study. Atmospheric Environment, 2018, 175, 75-82.	4.1	20
20	Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 2018, 216, 75-88.	5.1	36
21	Evaluating Bioenergy Cropping Systems towards Productivity and Resource Use Efficiencies: An Analysis Based on Field Experiments and Simulation Modelling. Agronomy, 2018, 8, 117.	3.0	7
22	Drought Tolerance and Waterâ€Use Efficiency of Biogas Crops: A Comparison of Cup Plant, Maize and Lucerneâ€Grass. Journal of Agronomy and Crop Science, 2017, 203, 117-130.	3.5	28
23	Sowing date and N application effects on tap root and above-ground dry matter of winter oilseed rape in autumn. European Journal of Agronomy, 2017, 83, 40-46.	4.1	18
24	Yield formation of Central-European winter wheat cultivars on a large scale perspective. European Journal of Agronomy, 2017, 86, 93-102.	4.1	11
25	Radiation use efficiency, chemical composition, and methane yield of biogas crops under rainfed and irrigated conditions. European Journal of Agronomy, 2017, 87, 8-18.	4.1	12
26	Developing and testing an algorithm for site-specific N fertilization of winter oilseed rape. Computers and Electronics in Agriculture, 2017, 136, 228-237.	7.7	14
27	Root traits of cup plant, maize and lucerne grass grown under different soil and soil moisture conditions. Journal of Agronomy and Crop Science, 2017, 203, 345-359.	3.5	22
28	Effect of biogas digestate, animal manure and mineral fertilizer application on nitrogen flows in biogas feedstock production. European Journal of Agronomy, 2017, 91, 63-73.	4.1	20
29	Nitrous oxide emissions from winter oilseed rape cultivation. Agriculture, Ecosystems and Environment, 2017, 249, 57-69.	5.3	35
30	Effects of acidification and injection of pasture applied cattle slurry on ammonia losses, N 2 O emissions and crop N uptake. Agriculture, Ecosystems and Environment, 2017, 247, 23-32.	5.3	34
31	Organ-specific approaches describing crop growth of winter oilseed rape under optimal and N-limited conditions. European Journal of Agronomy, 2017, 82, 71-79.	4.1	12
32	Effect of Sowing Method and N Application on Seed Yield and N Use Efficiency of Winter Oilseed Rape. Agronomy, 2017, 7, 21.	3.0	11
33	Integrating Wheat Canopy Temperatures in Crop System Models. Agronomy, 2016, 6, 7.	3.0	30
34	Nitrogen-limited light use efficiency in wheat crop simulators: comparing three model approaches. Journal of Agricultural Science, 2016, 154, 1090-1101.	1.3	10
35	A phenological model of winter oilseed rape according to the BBCH scale. Crop and Pasture Science, 2016, 67, 345.	1.5	18
36	Modelling N and Dry Matter Partitioning between Leaf and Stem of Wheat under Varying N Supply. Journal of Agronomy and Crop Science, 2016, 202, 576-586.	3.5	10

3

#	Article	IF	CITATIONS
37	Modelling Wheat Stomatal Resistance in Hourly Time Steps from Micrometeorological Variables and Soil Water Status. Journal of Agronomy and Crop Science, 2016, 202, 174-191.	3.5	10
38	A Simple Droughtâ€Sensitive Model for LeafÂ:ÂStem Partitioning of Wheat. Journal of Agronomy and Crop Science, 2016, 202, 300-308.	3.5	10
39	Dry matter partitioning and canopy traits in wheat and barley under varying N supply. European Journal of Agronomy, 2016, 74, 1-8.	4.1	21
40	Evaluation of small site-specific N fertilization trials using uniformly shaped response curves. European Journal of Agronomy, 2016, 76, 87-94.	4.1	6
41	Specific leaf area development of autumn-sown sugar beet (<i>Beta vulgaris L.</i>) on different sowing dates in northern Germany. Journal of Agricultural Science, 2015, 153, 1292-1301.	1.3	2
42	A Field Experiment to Test Interactive Effects of Elevated CO2 Concentration (FACE) and Elevated Canopy Temperature (FATE) on Wheat. Procedia Environmental Sciences, 2015, 29, 60-61.	1.4	5
43	Incorporation of Wheat Canopy Temperatures into Agroecosystem Models by Using a Meta-model. Procedia Environmental Sciences, 2015, 29, 144-146.	1.4	0
44	Effects of weather conditions during different growth phases on yield formation of winter oilseed rape. Field Crops Research, 2015, 173, 41-48.	5.1	69
45	Forecasting yield via reference- and scenario calculations. Computers and Electronics in Agriculture, 2015, 114, 212-220.	7.7	11
46	Ecological Efficiency of Maize-Based Cropping Systems for Biogas Production. Bioenergy Research, 2015, 8, 1621-1635.	3.9	11
47	Life-cycle assessment of biogas production under the environmental conditions of northern Germany: greenhouse gas balance. Journal of Agricultural Science, 2014, 152, 172-181.	1.3	17
48	Impact of heat stress on crop yieldâ€"on the importance of considering canopy temperature. Environmental Research Letters, 2014, 9, 044012.	5.2	151
49	The effect of nitrogen and late blight on crop growth, solar radiation interception and yield of two potato cultivars. Field Crops Research, 2014, 155, 56-66.	5.1	22
50	Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agriculture, Ecosystems and Environment, 2014, 197, 184-194.	5.3	99
51	Estimating net N mineralization under unfertilized winter wheat using simulations with NET N and a balance approach. Nutrient Cycling in Agroecosystems, 2014, 99, 31-44.	2.2	4
52	Cold season ammonia emissions from land spreading with anaerobic digestates from biogas production. Atmospheric Environment, 2014, 84, 35-38.	4.1	8
53	Emission of N2O from Biogas Crop Production Systems in Northern Germany. Bioenergy Research, 2014, 7, 1223-1236.	3.9	34
54	Application of pig slurryâ€"First year and residual effects on yield and N balance. European Journal of Agronomy, 2014, 59, 13-21.	4.1	16

#	Article	IF	CITATIONS
55	An analysis of factors determining spatial variable grain yield of winter wheat. European Journal of Agronomy, 2014, 52, 297-306.	4.1	17
56	Copper reducing strategies for late blight (Phytophthora infestans) control in organic potato (Solanum tuberosum) production. Journal of Plant Diseases and Protection, 2014, 121, 105-116.	2.9	7
57	Crop production for biogas and water protection—A trade-off?. Agriculture, Ecosystems and Environment, 2013, 177, 36-47.	5.3	40
58	Possible impact of the Renewable Energy Directive on N fertilization intensity and yield of winter oilseed rape in different cropping systems. Biomass and Bioenergy, 2013, 57, 168-179.	5.7	6
59	Is mutual shading a decisive factor for differences in overall canopy specific leaf area of winter wheat crops?. Field Crops Research, 2013, 149, 338-346.	5.1	21
60	Nitrogen leaching losses after biogas residue application to maize. Soil and Tillage Research, 2013, 130, 69-80.	5.6	77
61	Biogas cropping systems: Short term response of yield performance and N use efficiency to biogas residue application. European Journal of Agronomy, 2013, 47, 44-54.	4.1	64
62	Growth stage specific optima for the green area index of winter wheat. Field Crops Research, 2013, 148, 34-42.	5.1	4
63	Short-term effects of biogas residue application on yield performance and N balance parameters of maize in different cropping systems. Journal of Agricultural Science, 2013, 151, 449-462.	1.3	26
64	The measurement time required for determining total NH3 losses after field application of slurries by trail hoses. Journal of Agricultural Science, 2013, 151, 34-43.	1.3	4
65	Analysis of ammonia losses after field application of biogas slurries by an empirical model. Journal of Plant Nutrition and Soil Science, 2012, 175, 253-264.	1.9	28
66	Ammonia volatilization and yield response of energy crops after fertilization with biogas residues in a coastal marsh of Northern Germany. Agriculture, Ecosystems and Environment, 2012, 160, 66-74.	5. 3	50
67	A variable thermal time of the double ridge to flag leaf emergence phase improves the predictive quality of a CERES-Wheat type phenology model. Computers and Electronics in Agriculture, 2012, 89, 62-69.	7.7	29
68	An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a highâ€yield variety of barley. Physiologia Plantarum, 2012, 144, 189-200.	5.2	54
69	Improved modeling of grain number in winter wheat. Field Crops Research, 2012, 133, 167-175.	5.1	12
70	Modelling Ammonia Losses After Field Application of Biogas Slurry in Energy Crop Rotations. Water, Air, and Soil Pollution, 2012, 223, 29-47.	2.4	24
71	Measurement of ammonia emissions in multi-plot field experiments. Biosystems Engineering, 2011, 108, 164-173.	4. 3	47
72	Efficient N Management Using Winter Oilseed Rape. , 2011, , 931-942.		3

#	Article	IF	CITATIONS
73	Efficient N management using winter oilseed rape. A review. Agronomy for Sustainable Development, 2010, 30, 271-279.	5.3	79
74	Analysing soil and canopy factors affecting optimum nitrogen fertilization rates of oilseed rape (Brassica napus). Journal of Agricultural Science, 2009, 147, 1-8.	1.3	28
75	Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutrient Cycling in Agroecosystems, 2008, 82, 299-314.	2.2	37
76	Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape (Brassica napus L.). Biosystems Engineering, 2008, 101, 172-182.	4.3	51
77	The potential of semi-dwarf oilseed rape genotypes to reduce the risk of N leaching. Journal of Agricultural Science, 2008, 146, 77-84.	1.3	23
78	Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. Journal of Agricultural Science, 2007, 145, 455-468.	1.3	39
79	Modelling the effects of soil water limitations on transpiration and stomatal regulation of cauliflower. European Journal of Agronomy, 2007, 26, 375-383.	4.1	16
80	Comparing different approaches to calculate the effects of heterogeneous root distribution on nutrient uptake: a case study on subsoil nitrate uptake by a barley root system. Plant and Soil, 2007, 298, 145-159.	3.7	8
81	N balance as an indicator of N leaching in an oilseed rape $\hat{a} \in \text{``winter wheat } \hat{a} \in \text{``winter barley rotation.}$ Agriculture, Ecosystems and Environment, 2006, 115, 261-269.	5.3	132
82	Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. European Journal of Agronomy, 2004, 20, 379-394.	4.1	121
83	Irrigation Scheduling of Kohlrabi (Brassica oleracea var. gongylodes) Using Crop Water Stress Index. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 276-279.	1.0	12
84	Aspects of nitrogen use efficiency of cauliflower I. A simulation modelling based analysis of nitrogen availability under field conditions. Journal of Agricultural Science, 2003, 141, 1-16.	1.3	26
85	Aspects of nitrogen use efficiency of cauliflower II. Productivity and nitrogen partitioning as influenced by N supply. Journal of Agricultural Science, 2003, 141, 17-29.	1.3	12
86	Title is missing!. Plant and Soil, 2002, 246, 201-209.	3.7	30
87	Predicting dry matter production of cauliflower (Brassica oleracea L. botrytis) under unstressed conditions. Scientia Horticulturae, 2001, 87, 155-170.	3.6	7
88	Predicting dry matter production of cauliflower (Brassica oleracea L. botrytis) under unstressed conditions. Scientia Horticulturae, 2001, 87, 171-190.	3.6	18
89	Nitrogen Status and Light Environment Influence Dry Matter Partitioning in Cauliflower. Journal of the American Society for Horticultural Science, 2001, 126, 750-756.	1.0	2
90	Title is missing!. Plant and Soil, 2000, 223, 133-147.	3.7	40

#	Article	IF	CITATION
91	Optimal Nitrogen Content and Photosynthesis in Cauliflower (Brassica oleracea L. botrytis). Scaling up from a Leaf to the Whole Plant. Annals of Botany, 2000, 85, 779-787.	2.9	16
92	Modelling Nitrogen Content and Distribution in Cauliflower (Brassica oleracea L.botrytis). Annals of Botany, 2000, 86, 963-973.	2.9	18
93	A simple empirical model for predicting development and dry matter partitioning in cauliflower (Brassica oleracea L. botrytis). Scientia Horticulturae, 1999, 80, 19-38.	3.6	28
94	Zur relativen Bedeutung von Massenfluß und Diffusion beim Nitrattransport zur Wurzel. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1997, 160, 171-178.	0.4	11
95	Is low rooting density of faba beans a cause of high residual nitrate content of soil at harvest?. Plant and Soil, 1997, 190, 47-60.	3.7	30
96	Does transport of water to roots limit water uptake of field crops?. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1996, 159, 583-590.	0.4	27
97	Interaction of nitrate uptake and nitrogen fixation in faba beans. Plant and Soil, 1995, 176, 189-196.	3.7	6
98	Reevaluation of the Evaporation Method for Determining Hydraulic Functions in Unsaturated Soils. Soil Science Society of America Journal, 1993, 57, 1436-1443.	2.2	142