
Yannick Copin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package [*] . Astronomical Journal, 2018, 156, 123.	4.7	4,142
2	Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations. Monthly Notices of the Royal Astronomical Society, 2003, 342, 345-354.	4.4	953
3	The SAURON project - I. The panoramic integral-field spectrograph. Monthly Notices of the Royal Astronomical Society, 2001, 326, 23-35.	4.4	532
4	The SAURON project $\hat{a} \in$ " II. Sample and early results. Monthly Notices of the Royal Astronomical Society, 2002, 329, 513-530.	4.4	462
5	Kinemetry: a generalization of photometry to the higher moments of the line-of-sight velocity distribution. Monthly Notices of the Royal Astronomical Society, 2006, 366, 787-802.	4.4	416
6	The SAURON project – III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 352, 721-743.	4.4	395
7	NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR. Astrophysical Journal, 2010, 713, 1073-1094.	4.5	292
8	On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae. Astrophysical Journal, 2007, 656, 372-381.	4.5	244
9	Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope. Astrophysical Journal, 2006, 650, 510-527.	4.5	222
10	Overview of the Nearby Supernova Factory. , 2002, , .		203
11	Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory. Astronomy and Astrophysics, 2013, 554, A27.	5.1	178
12	CONSTRAINING TYPE la SUPERNOVA MODELS: SN 2011fe AS A TEST CASE. Astrophysical Journal Letters, 2012, 750, L19.	8.3	175
13	CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT. Astrophysical Journal, 2015, 802, 20.	4.5	171
14	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H <i>α</i> . Astronomy and Astrophysics, 2013, 560, A66.	5.1	151
15	A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass. Monthly Notices of the Royal Astronomical Society, 2002, 335, 517-525.	4.4	144
16	Galactic Globular Cluster Metallicity Scale from the CA II Triplet I. Catalog. Publications of the Astronomical Society of the Pacific, 1997, 109, 883.	3.1	143
17	Historic Light Curve and Longâ€Term Optical Variation of BL Lacertae 2200+420. Astrophysical Journal, 1998, 507, 173-178.	4.5	130

18 SNIFS: a wideband integral field spectrograph with microlens arrays. , 2004, , .

129

#	Article	IF	CITATIONS
19	HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 108.	4.5	123
20	Galaxy Mapping with the SAURON Integral-Field Spectrograph: The Star Formation History of NGC 4365. Astrophysical Journal, 2001, 548, L33-L36.	4.5	110
21	The reddening law of type Ia supernovae: separating intrinsic variability from dust using equivalent widths. Astronomy and Astrophysics, 2011, 529, L4.	5.1	110
22	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 662, A112.	5.1	106
23	Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1498-1518.	4.4	105
24	Strong dependence of Type Ia supernova standardization on the local specific star formation rate. Astronomy and Astrophysics, 2020, 644, A176.	5.1	96
25	Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astronomy and Astrophysics, 2019, 627, A115.	5.1	89
26	Using spectral flux ratios to standardize SNÂla luminosities. Astronomy and Astrophysics, 2009, 500, L17-L20.	5.1	85
27	Atmospheric extinction properties above Mauna Kea from the Nearby SuperNova Factory spectro-photometric data set. Astronomy and Astrophysics, 2013, 549, A8.	5.1	85
28	Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory. Astronomy and Astrophysics, 2013, 560, A90.	5.1	80
29	TYPE la SUPERNOVA CARBON FOOTPRINTS. Astrophysical Journal, 2011, 743, 27.	4.5	78
30	The M 31 double nucleus probed with OASIS and HST. Astronomy and Astrophysics, 2001, 371, 409-428.	5.1	72
31	Formation and evolution of S0 galaxies: a SAURON case study of NGC 7332. Monthly Notices of the Royal Astronomical Society, 2004, 350, 35-46.	4.4	64
32	A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET. Astrophysical Journal, 2012, 757, 12.	4.5	64
33	HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 107.	4.5	63
34	<i>Euclid</i> preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2840-2869.	4.4	62
35	The peculiar velocity field up to zÂâ^¼Â0.05 by forward-modelling Cosmicflows-3 data. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5438-5451.	4.4	58
36	The Nearby Supernova Factory. New Astronomy Reviews, 2004, 48, 637-640.	12.8	49

#	Article	IF	CITATIONS
37	Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra. Astrophysical Journal, 2007, 654, L53-L56.	4.5	49
38	IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE. Astrophysical Journal, 2015, 815, 58.	4.5	47
39	STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION. Astrophysical Journal, 2013, 766, 84.	4.5	40
40	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 644, A31.	5.1	39
41	SNEMO: Improved Empirical Models for Type la Supernovae. Astrophysical Journal, 2018, 869, 167.	4.5	37
42	KECK OBSERVATIONS OF THE YOUNG METAL-POOR HOST GALAXY OF THE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVA SN 2007if. Astrophysical Journal, 2011, 733, 3.	4.5	28
43	Axisymmetric dynamical models for SAURON and OASIS observations of NGC 3377. Astronomy and Astrophysics, 2004, 415, 889-903.	5.1	27
44	SUGAR: An improved empirical model of Type Ia supernovae based on spectral features. Astronomy and Astrophysics, 2020, 636, A46.	5.1	26
45	Redshift evolution of the underlying type Ia supernova stretch distribution. Astronomy and Astrophysics, 2021, 649, A74.	5.1	23
46	The infrared and optical variability of OJÂ287. Astronomy and Astrophysics, 1998, 133, 163-169.	2.1	23
47	The Nearby Supernova Factory. New Astronomy Reviews, 2006, 50, 436-438.	12.8	22
48	A 60Âpc counter-rotating core in NGCÂ4621. Astronomy and Astrophysics, 2002, 396, 73-81.	5.1	20
49	The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu. Astrophysical Journal, 2017, 836, 157.	4.5	18
50	A metric space for Type Ia supernova spectra. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1247-1266.	4.4	16
51	Accuracy of environmental tracers and consequences for determining the Type Ia supernova magnitude step. Astronomy and Astrophysics, 2022, 657, A22.	5.1	16
52	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A192.	5.1	15
53	OASIS high-resolution integral field spectroscopy of the SAURON ellipticals and lenticulars. Astronomische Nachrichten, 2004, 325, 100-103.	1.2	14
54	The Euro3D data format: A common FITS data format for integral field spectrographs. Astronomische Nachrichten, 2004, 325, 159-162.	1.2	14

#	Article	lF	CITATIONS
55	Partitioning the Universe into gravitational basins using the cosmic velocity field. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 489, L1-L6.	3.3	14
56	New Modules for the SEDMachine to Remove Contaminations from Cosmic Rays and Non-target Light: byecr and contsep. Publications of the Astronomical Society of the Pacific, 2022, 134, 024505.	3.1	14
57	TYPE Ia SUPERNOVA HUBBLE RESIDUALS AND HOST-GALAXY PROPERTIES. Astrophysical Journal, 2014, 784, 51.	4.5	13
58	The Twins Embedding of Type Ia Supernovae. II. Improving Cosmological Distance Estimates. Astrophysical Journal, 2021, 912, 71.	4.5	12
59	Understanding type Ia supernovae through their <i>U</i> band spectra. Astronomy and Astrophysics, 2018, 614, A71.	5.1	11
60	The Twins Embedding of Type Ia Supernovae. I. The Diversity of Spectra at Maximum Light. Astrophysical Journal, 2021, 912, 70.	4.5	11
61	Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3. Astrophysical Journal, Supplement Series, 2021, 256, 9.	7.7	11
62	Visible and near-infrared spectrophotometry of the Deep Impact ejecta of Comet 9P/Tempel 1. Icarus, 2007, 187, 185-198.	2.5	10
63	TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM <i>K</i> -CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES. Astrophysical Journal, 2015, 800, 57.	4.5	8
64	Correcting for peculiar velocities of Type Ia supernovae in clusters of galaxies. Astronomy and Astrophysics, 2018, 615, A162.	5.1	8
65	Probing a regular orbit with spectral dynamics. Monthly Notices of the Royal Astronomical Society, 2000, 318, 781-797.	4.4	7
66	A Binary Offset Effect in CCD Readout and Its Impact on Astronomical Data. Publications of the Astronomical Society of the Pacific, 2018, 130, 064504.	3.1	7
67	SCALA: In situ calibration for integral field spectrographs. Astronomy and Astrophysics, 2017, 607, A113.	5.1	6
68	The SNEMO and SUGAR Companion Data Sets. Research Notes of the AAS, 2020, 4, 63.	0.7	5
69	Visible and near-infrared spectrophotometry of the Deep Impact ejecta of Comet 9P/Tempel 1. Icarus, 2007, 191, 389-402.	2.5	4
70	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H <i>α (Corrigendum)</i> . Astronomy and Astrophysics, 2018, 612, C1.	5.1	3
71	Automated reliability assessment for spectroscopic redshift measurements. Astronomy and Astrophysics, 2018, 611, A53.	5.1	3
72	Forward modeling of galaxy kinematics in slitless spectroscopy. Astronomy and Astrophysics, 2020, 633, A43.	5.1	3

#	Article	IF	CITATIONS
73	SAURON: integral-field spectroscopy of galaxies. New Astronomy Reviews, 2001, 45, 83-86.	12.8	2
74	Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2015, 578, C1.	5.1	2
75	<i>Euclid</i> : Constraining ensemble photometric redshift distributions with stacked spectroscopy. Astronomy and Astrophysics, 2022, 660, A9.	5.1	2
76	Cosmology with the Nearby Supernova Factory. Progress in Particle and Nuclear Physics, 2011, 66, 335-339.	14.4	1
77	The nearby supernova factory. Astronomische Nachrichten, 2004, 325, 116-119.	1.2	0
78	The Euro3D LCL I/O library. Astronomische Nachrichten, 2004, 325, 163-166.	1.2	0
79	Data taking in Virtual Control Room: the SNfactory example. , 2008, , .		0
80	The Nearby Supernova Factory: First Results. EAS Publications Series, 2009, 36, 11-15.	0.3	0
81	The Nearby Supernova Factory dataset-improving SNe Ia as dark energy probes. , 2010, , .		0
82	SCALA: Towards a physical calibration of CALSPEC standard stars based on a NIST-traceable reference for SNIFS. Proceedings of the International Astronomical Union, 2018, 14, 494-494.	0.0	0
83	The Nearby Supernova Factory. , 0, , 404-407.		О