
Sophie G Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A focus on yeast mating: From pheromone signaling to cell-cell fusion. Seminars in Cell and Developmental Biology, 2023, 133, 83-95.	2.3	20
2	Actin assembly requirements of the formin Fus1 to build the fusion focus. Journal of Cell Science, 2022, 135, .	1.2	1
3	Physiology of maerl algae: Comparison of inter―and intraspecies variations. Journal of Phycology, 2021, 57, 831-848.	1.0	5
4	Direct and indirect regulation of Pom1 cell size pathway by the protein phosphatase 2C Ptc1. Molecular Biology of the Cell, 2021, 32, 703-711.	0.9	4
5	Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion. Journal of Cell Biology, 2021, 220, .	2.3	11
6	Cell patterning by secretion-induced plasma membrane flows. Science Advances, 2021, 7, eabg6718.	4.7	20
7	Cell cycle-dependent and independent mating blocks ensure fungal zygote survival and ploidy maintenance. PLoS Biology, 2021, 19, e3001067.	2.6	2
8	Going with the membrane flow: the impact of polarized secretion on bulk plasma membrane flows. FEBS Journal, 2021, , .	2.2	5
9	A toolbox of Stable Integration Vectors (SIV) in the fission yeast <i>Schizosaccharomyces pombe</i> . Journal of Cell Science, 2020, 133, .	1.2	39
10	Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast. Cells, 2020, 9, 2089.	1.8	9
11	Sterol biosensor reveals LAM-family Ltc1-dependent sterol flow to endosomes upon Arp2/3 inhibition. Journal of Cell Biology, 2020, 219, .	2.3	32
12	DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Molecular Biology of the Cell, 2020, 31, 917-929.	0.9	23
13	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. PLoS Biology, 2020, 18, e3000600.	2.6	38
14	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. , 2020, 18, e3000600.		0
15	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. , 2020, 18, e3000600.		0
16	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. , 2020, 18, e3000600.		0
17	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. , 2020, 18, e3000600.		0
18	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. , 2020, 18, e3000600.		0

#	Article	IF	CITATIONS
19	Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. , 2020, 18, e3000600.		0
20	Quorum sensing with pheromones. Nature Microbiology, 2019, 4, 1430-1431.	5.9	4
21	Capping Protein Insulates Arp2/3-Assembled Actin Patches from Formins. Current Biology, 2019, 29, 3165-3176.e6.	1.8	29
22	Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. Journal of Cell Science, 2019, 132, .	1.2	28
23	Yeast-to-hypha transition of <i>Schizosaccharomyces japonicus</i> in response to environmental stimuli. Molecular Biology of the Cell, 2019, 30, 975-991.	0.9	33
24	Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecology and Evolution, 2019, 9, 13787-13807.	0.8	18
25	Multi-phosphorylation reaction and clustering tune Pom1 gradient mid-cell levels according to cell size. ELife, 2019, 8, .	2.8	21
26	Inhibition of Ras activity coordinates cell fusion with cell–cell contact during yeast mating. Journal of Cell Biology, 2018, 217, 1467-1483.	2.3	29
27	The role of local environmental changes on maerl and its associated non-calcareous epiphytic flora in the Bay of Brest. Estuarine, Coastal and Shelf Science, 2018, 208, 140-152.	0.9	20
28	Ecological characterization of intertidal rockpools: Seasonal and diurnal monitoring of physico-chemical parameters. Regional Studies in Marine Science, 2018, 17, 1-10.	0.4	43
29	Differential GAP requirement for Cdc42-GTP polarization during proliferation and sexual reproduction. Journal of Cell Biology, 2018, 217, 4215-4229.	2.3	31
30	Exploration and stabilization of Ras1 mating zone: A mechanism with positive and negative feedbacks. PLoS Computational Biology, 2018, 14, e1006317.	1.5	16
31	Dynamic visits of cortical structures probe for cell size. Journal of Cell Biology, 2018, 217, 1559-1561.	2.3	4
32	Gamete fusion triggers bipartite transcription factor assembly to block re-fertilization. Nature, 2018, 560, 397-400.	13.7	24
33	Effects of Ocean Warming and Acidification on Rhodolith/Maërl Beds. Coastal Research Library, 2017, , 55-85.	0.2	43
34	Live Cell Imaging of the <i>Schizosaccharomyces pombe</i> Sexual Life Cycle. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot090225.	0.2	4
35	A systematic screen for morphological abnormalities during fission yeast sexual reproduction identifies a mechanism of actin aster formation for cell fusion. PLoS Genetics, 2017, 13, e1006721.	1.5	34
36	Role and organization of the actin cytoskeleton during cell-cell fusion. Seminars in Cell and Developmental Biology, 2016, 60, 121-126.	2.3	20

#	Article	IF	CITATIONS
37	Spatial focalization of pheromone/MAPK signaling triggers commitment to cell–cell fusion. Genes and Development, 2016, 30, 2226-2239.	2.7	37
38	Microscopy of Fission Yeast Sexual Lifecycle. Journal of Visualized Experiments, 2016, , .	0.2	29
39	Local Pheromone Release from Dynamic Polarity Sites Underlies Cell-Cell Pairing during Yeast Mating. Current Biology, 2016, 26, 1117-1125.	1.8	47
40	PKA antagonizes CLASP-dependent microtubule stabilization to re-localize Pom1 and buffer cell size upon glucose limitation. Nature Communications, 2015, 6, 8445.	5.8	28
41	Pom1 gradient buffering through intermolecular autoâ€phosphorylation. Molecular Systems Biology, 2015, 11, 818.	3.2	22
42	Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. BioEssays, 2015, 37, 1193-1201.	1.2	62
43	Casein Kinase $1^{\hat{1}3}$ Ensures Monopolar Growth Polarity under Incomplete DNA Replication Downstream of Cds1 and Calcineurin in Fission Yeast. Molecular and Cellular Biology, 2015, 35, 1533-1542.	1.1	9
44	Editorial overview: Eukaryotic microbes: models and beyond. Current Opinion in Microbiology, 2015, 28, v-vi.	2.3	1
45	Spontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking. PLoS Biology, 2015, 13, e1002097.	2.6	107
46	A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast. Journal of Cell Biology, 2015, 208, 897-911.	2.3	65
47	The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles. Journal of Cell Biology, 2015, 211, 653-668.	2.3	8
48	Pom1 regulates the assembly of Cdr2–Mid1 cortical nodes for robust spatial control of cytokinesis. Journal of Cell Biology, 2014, 206, 61-77.	2.3	57
49	Distinct levels in Pom1 gradients limit Cdr2 activity and localization to time and position division. Cell Cycle, 2014, 13, 538-552.	1.3	54
50	Yeasts as models in cell biology. FEMS Microbiology Reviews, 2014, 38, 143-143.	3.9	1
51	Cell polarization in budding and fission yeasts. FEMS Microbiology Reviews, 2014, 38, 228-253.	3.9	108
52	Tea4-phosphatase I landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion. Journal of Cell Science, 2014, 127, 2005-16.	1.2	25
53	The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. Journal of Cell Biology, 2014, 205, 357-375.	2.3	40
54	Oneâ€year experiment on the physiological response of the Mediterranean crustose coralline alga, <i><scp>L</scp>ithophyllum cabiochae</i> , to elevated <i>p</i> <scp>CO</scp> ₂ and temperature. Ecology and Evolution, 2013, 3, 676-693.	0.8	123

#	Article	IF	CITATIONS
55	Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. Journal of Experimental Marine Biology and Ecology, 2013, 448, 179-187.	0.7	94
56	Cdc42 Explores the Cell Periphery for Mate Selection in Fission Yeast. Current Biology, 2013, 23, 42-47.	1.8	93
57	Photosynthesis, respiration and calcification in the Mediterranean crustose coralline alga <i>Lithophyllum cabiochae</i> (Corallinales, Rhodophyta). European Journal of Phycology, 2013, 48, 163-172.	0.9	53
58	Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology, 2013, 160, 2103-2112.	0.7	81
59	Mate and fuse: how yeast cells do it. Open Biology, 2013, 3, 130008.	1.5	199
60	Myosin Vs organize actin cables in fission yeast. Molecular Biology of the Cell, 2012, 23, 4579-4591.	0.9	43
61	Being at the right place at the right time. Molecular Biology of the Cell, 2012, 23, 4148-4150.	0.9	1
62	Cdc42 Oscillations in Yeasts. Science Signaling, 2012, 5, pe53.	1.6	7
63	Fission yeast: in shape to divide. Current Opinion in Cell Biology, 2012, 24, 858-864.	2.6	25
64	Fission Yeast Sec3 and Exo70 Are Transported on Actin Cables and Localize the Exocyst Complex to Cell Poles. PLoS ONE, 2012, 7, e40248.	1.1	59
65	A Phosphorylation Cycle Shapes Gradients of the DYRK Family Kinase Pom1 at the Plasma Membrane. Cell, 2011, 145, 1116-1128.	13.5	107
66	Deconstructing the cell cycle. Nature Reviews Molecular Cell Biology, 2011, 12, 689-689.	16.1	4
67	Shaping Fission Yeast Cells by Rerouting Actin-Based Transport on Microtubules. Current Biology, 2011, 21, 2064-2069.	1.8	21
68	Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast. Molecular Biology of the Cell, 2011, 22, 44-53.	0.9	100
69	LKB1 regulates polarity remodeling and adherens junction formation in the <i>Drosophila</i> eye. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8941-8946.	3.3	62
70	Shaping Fission Yeast with Microtubules. Cold Spring Harbor Perspectives in Biology, 2009, 1, a001347-a001347.	2.3	110
71	Geometric control of the cell cycle. Cell Cycle, 2009, 8, 3643-3647.	1.3	26
72	Pob1 Participates in the Cdc42 Regulation of Fission Yeast Actin Cytoskeleton. Molecular Biology of the Cell, 2009, 20, 4390-4399.	0.9	46

#	Article	IF	CITATIONS
73	Microtubule-dependent cell morphogenesis in the fission yeast. Trends in Cell Biology, 2009, 19, 447-454.	3.6	66
74	Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology, 2009, 15, 2089-2100.	4.2	384
75	Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature, 2009, 459, 852-856.	13.7	268
76	Regulation of Actin Assembly by Microtubules in Fission Yeast Cell Polarity. Novartis Foundation Symposium, 2008, , 59-72.	1.2	8
77	Regulation of the Formin for3p by cdc42p and bud6p. Molecular Biology of the Cell, 2007, 18, 4155-4167.	0.9	128
78	Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany, 2006, 85, 121-128.	0.8	94
79	Dynamics of the Formin For3p in Actin Cable Assembly. Current Biology, 2006, 16, 1161-1170.	1.8	108
80	The Cell-End Factor Pom1p Inhibits Mid1p in Specification of the Cell Division Plane in Fission Yeast. Current Biology, 2006, 16, 2480-2487.	1.8	126
81	New End Take Off: Regulating Cell Polarity during the Fission. Cell Cycle, 2005, 4, 4046-4049.	1.3	62
82	Tea4p Links Microtubule Plus Ends with the Formin For3p in the Establishment of Cell Polarity. Developmental Cell, 2005, 8, 479-491.	3.1	201
83	New end take off: regulating cell polarity during the fission yeast cell cycle. Cell Cycle, 2005, 4, 1046-9.	1.3	32
84	Cell Polarity: A New Mod(e) of Anchoring. Current Biology, 2003, 13, R711-R713.	1.8	18
85	A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature, 2003, 421, 379-384.	13.7	283
86	The identification of novel genes required for Drosophilaanteroposterior axis formation in a germline clone screen using GFP-Staufen. Development (Cambridge), 2003, 130, 4201-4215.	1.2	60
87	A rapid method to map mutations in Drosophila. Genome Biology, 2001, 2, research0036.1.	13.9	36
88	Kuâ€deficient yeast strains exhibit alternative states of silencing competence. EMBO Reports, 2001, 2, 203-210.	2.0	53
89	The Dynamics of Yeast Telomeres and Silencing Proteins through the Cell Cycle. Journal of Structural Biology, 2000, 129, 159-174.	1.3	91
90	Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in Yeast. Cell, 1999, 97, 621-633.	13.5	438

#	Article	IF	CITATIONS
91	Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Current Biology, 1998, 8, 653-657.	1.8	330
92	Targeting Sir Proteins to Sites of Action: A General Mechanism for Regulated Repression. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 401-412.	2.0	36
93	Sterol Flow between the Plasma Membrane and the Endosome is Regulated by the LAM Family Protein Ltc1. SSRN Electronic Journal, 0, , .	0.4	1