## Jaime M Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941235/publications.pdf Version: 2024-02-01



LAIME M MEDINO

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Frontiers in Cell and<br>Developmental Biology, 2022, 10, 884004.                                                                                                   | 3.7  | 8         |
| 2  | Aryl hydrocarbon receptor blocks aging-induced senescence in the liver and fibroblast cells. Aging, 2022, 14, 4281-4304.                                                                                                              | 3.1  | 10        |
| 3  | The aryl hydrocarbon receptor promotes differentiation during mouse preimplantational embryo development. Stem Cell Reports, 2021, 16, 2351-2363.                                                                                     | 4.8  | 9         |
| 4  | Alu retrotransposons modulate Nanog expression through dynamic changes in regional chromatin conformation via aryl hydrocarbon receptor. Epigenetics and Chromatin, 2020, 13, 15.                                                     | 3.9  | 12        |
| 5  | The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. , 2018, 185, 50-63.                                                                                                                     |      | 72        |
| 6  | Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin<br>Signaling. IScience, 2018, 4, 44-63.                                                                                           | 4.1  | 26        |
| 7  | Dioxin Receptor Adjusts Liver Regeneration After Acute Toxic Injury and Protects Against Liver<br>Carcinogenesis. Scientific Reports, 2017, 7, 10420.                                                                                 | 3.3  | 25        |
| 8  | Lung regeneration after toxic injury is improved in absence of dioxin receptor. Stem Cell Research, 2017, 25, 61-71.                                                                                                                  | 0.7  | 21        |
| 9  | AhR-dependent 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicity in human neuronal cell line SHSY5Y.<br>NeuroToxicology, 2016, 56, 55-63.                                                                                                 | 3.0  | 12        |
| 10 | <i>Alu</i> retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Research, 2016, 44, 4665-4683.                                                                      | 14.5 | 45        |
| 11 | Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis.<br>Molecular Cancer, 2015, 14, 148.                                                                                                  | 19.2 | 31        |
| 12 | 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium<br>homeostasis in human neuronal cell line SHSY5Y. Apoptosis: an International Journal on Programmed<br>Cell Death, 2012, 17, 1170-1181. | 4.9  | 36        |
| 13 | Aryl hydrocarbon receptorâ€dependent induction of apoptosis by<br>2,3,7,8â€ŧetrachlorodibenzoâ€ <i>p</i> â€dioxin in cerebellar granule cells from mouse. Journal of<br>Neurochemistry, 2011, 118, 153-162.                           | 3.9  | 51        |
| 14 | 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis in neural growth factor (NGF)-differentiated pheochromocytoma PC12 cells. NeuroToxicology, 2010, 31, 267-276.                                                                   | 3.0  | 35        |
| 15 | Nerve growth factor increases the sensitivity to zinc toxicity and induces cell cycle arrest in PC12 cells. Brain Research Bulletin, 2010, 81, 458-466.                                                                               | 3.0  | 19        |
| 16 | The Dioxin Receptor Regulates the Constitutive Expression of the <i>Vav3</i> Proto-Oncogene and Modulates Cell Shape and Adhesion. Molecular Biology of the Cell, 2009, 20, 1715-1727.                                                | 2.1  | 72        |
| 17 | NMDA-induced neuroprotection in hippocampal neurons is mediated through the protein kinase A and CREB (cAMP-response element-binding protein) pathway. Neurochemistry International, 2008, 53, 148-154.                               | 3.8  | 42        |
| 18 | Resveratrolâ€induced apoptosis in MCFâ€7 human breast cancer cells involves a caspaseâ€independent<br>mechanism with downregulation of Bclâ€2 and NFâ€ĤB. International Journal of Cancer, 2005, 115, 74-84.                          | 5.1  | 208       |

JAIME M MERINO

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Small peptides patterned after the Nâ€ŧerminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis. Journal of Neurochemistry, 2004, 88, 124-135.                                      | 3.9  | 39        |
| 20 | Down-regulation of CYP1A2 induction during the maturation of mouse cerebellar granule cells in culture: role of nitric oxide accumulation. European Journal of Neuroscience, 2003, 18, 2265-2272.           | 2.6  | 13        |
| 21 | Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library. Biochemical Journal, 2003, 375, 159-166.                                              | 3.7  | 23        |
| 22 | A Novel N-Methyl-d-aspartate Receptor Open Channel Blocker with in Vivo Neuroprotectant Activity.<br>Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 163-173.                             | 2.5  | 41        |
| 23 | Neuroprotection Against Excitotoxicity by N-Alkylglycines in Rat Hippocampal Neurons.<br>NeuroMolecular Medicine, 2002, 2, 271-280.                                                                         | 3.4  | 10        |
| 24 | pH and ligand binding modulate the strength of protein–protein interactions in the Ca2+-ATPase from<br>sarcoplasmic reticulum membranes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1420, 203-213. | 2.6  | 3         |
| 25 | Plausible Stoichiometry of the Interacting Nucleotide-Binding Sites in the Ca2+-ATPase from<br>Sarcoplasmic Reticulum Membranes. Archives of Biochemistry and Biophysics, 1999, 368, 298-302.               | 3.0  | 4         |
| 26 | Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death.<br>Nature Biotechnology, 1998, 16, 286-291.                                                                 | 17.5 | 43        |
| 27 | Structural determinants of the blocker binding site in glutamate and NMDA receptor channels.<br>Neuropharmacology, 1998, 37, 139-147.                                                                       | 4.1  | 35        |
| 28 | Structural Changes of the Sarcoplasmic Reticulum Ca(II)-ATPase Nucleotide Binding Domain by pH and<br>La(III). Archives of Biochemistry and Biophysics, 1997, 348, 152-156.                                 | 3.0  | 3         |
| 29 | Thermal unfolding of monomeric Ca(II),Mg(II)-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle. FEBS Letters, 1994, 343, 155-159.                                                                | 2.8  | 18        |
| 30 | Fluorescence energy transfer as a tool to locate functional sites in membrane proteins. Biochemical Society Transactions, 1994, 22, 784-788.                                                                | 3.4  | 14        |
| 31 | Differential scanning calorimetry study of the thermal unfolding of sarcoplasmic reticulum Ca2+,<br>Mg2+-ATPase from rabbit skeletal muscle. Biochemical Society Transactions, 1994, 22, 384S-384S.         | 3.4  | 2         |