List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940716/publications.pdf Version: 2024-02-01

SHU DING LAU

#	Article	IF	CITATIONS
1	Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano, 2012, 6, 5102-5110.	14.6	1,526
2	Infrared Photodetectors Based on CVDâ€Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Advanced Materials, 2012, 24, 5878-5883.	21.0	698
3	Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS ₂ Sheet. ACS Nano, 2013, 7, 7126-7131.	14.6	550
4	Graphene quantum dots from chemistry to applications. Materials Today Chemistry, 2018, 10, 221-258.	3.5	539
5	Highâ€Electronâ€Mobility and Airâ€Stable 2D Layered PtSe ₂ FETs. Advanced Materials, 2017, 29, 1604230.	21.0	502
6	Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots. ACS Nano, 2014, 8, 6312-6320.	14.6	455
7	Extraordinarily Strong Interlayer Interaction in 2D Layered PtS ₂ . Advanced Materials, 2016, 28, 2399-2407.	21.0	415
8	Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94, 354-358.	2.5	385
9	Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film. Journal of Physical Chemistry B, 2005, 109, 7746-7748.	2.6	328
10	Fast, Selfâ€Driven, Airâ€Stable, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction. Advanced Functional Materials, 2018, 28, 1705970.	14.9	314
11	Multilayered PdSe ₂ /Perovskite Schottky Junction for Fast, Selfâ€Powered, Polarization‣ensitive, Broadband Photodetectors, and Image Sensor Application. Advanced Science, 2019, 6, 1901134.	11.2	308
12	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nature Communications, 2018, 9, 4164.	12.8	304
13	Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. Journal of Materials Chemistry A, 2014, 2, 9142-9149.	10.3	299
14	The Application of Highly Doped Single-Layer Graphene as the Top Electrodes of Semitransparent Organic Solar Cells. ACS Nano, 2012, 6, 810-818.	14.6	297
15	Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Advanced Functional Materials, 2019, 29, 1806878.	14.9	286
16	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	38.1	283
17	Energy-level structure of nitrogen-doped graphene quantum dots. Journal of Materials Chemistry C, 2013, 1, 4908.	5.5	277
18	Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse. ACS Nano, 2017, 11, 4225-4236.	14.6	277

#	Article	IF	CITATIONS
19	Fieldâ€Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition. Advanced Materials, 2015, 27, 3748-3754.	21.0	274
20	Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale, 2014, 6, 5323-5328.	5.6	267
21	Bottom-up synthesis of large-scale graphene oxide nanosheets. Journal of Materials Chemistry, 2012, 22, 5676.	6.7	242
22	High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Scientific Reports, 2016, 6, 20343.	3.3	230
23	Black Phosphorus–Polymer Composites for Pulsed Lasers. Advanced Optical Materials, 2015, 3, 1447-1453.	7.3	228
24	Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. Journal of Applied Physics, 2003, 94, 1597-1604.	2.5	211
25	Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Applied Physics Letters, 2004, 84, 3241-3243.	3.3	210
26	Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc. Journal of Crystal Growth, 2001, 223, 201-205.	1.5	207
27	Van der Waals Epitaxial Growth of Mosaicâ€Like 2D Platinum Ditelluride Layers for Roomâ€Temperature Midâ€Infrared Photodetection up to 10.6 µm. Advanced Materials, 2020, 32, e2004412.	21.0	202
28	Solutionâ€Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 864-871.	14.9	187
29	Solutionâ€Processed MoS ₂ /Organolead Trihalide Perovskite Photodetectors. Advanced Materials, 2017, 29, 1603995.	21.0	187
30	Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Materials, 2018, 10, 352-362.	7.9	187
31	2D Layered Materials of Rareâ€Earth Erâ€Doped MoS ₂ with NIRâ€toâ€NIR Down―and Upâ€Conve Photoluminescence. Advanced Materials, 2016, 28, 7472-7477.	ersion 21.0	180
32	Sizeâ€Dependent Structural and Optical Characteristics of Glucoseâ€Derived Graphene Quantum Dots. Particle and Particle Systems Characterization, 2013, 30, 523-531.	2.3	175
33	UV Raman characteristics of nanocrystalline diamond films with different grain size. Diamond and Related Materials, 2000, 9, 1979-1983.	3.9	165
34	An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. Journal of Materials Chemistry, 2012, 22, 22378.	6.7	162
35	Multicolour light emission from chlorine-doped graphene quantum dots. Journal of Materials Chemistry C, 2013, 1, 7308.	5.5	157
36	Layerâ€Dependent Nonlinear Optical Properties and Stability of Nonâ€Centrosymmetric Modification in Few‣ayer GaSe Sheets. Angewandte Chemie - International Edition, 2015, 54, 1185-1189.	13.8	156

#	Article	IF	CITATIONS
37	Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Scientific Reports, 2015, 5, 11830.	3.3	155
38	Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. Journal of Crystal Growth, 2004, 268, 596-601.	1.5	150
39	A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy, 2017, 36, 260-267.	16.0	135
40	Remarkably Enhanced Hydrogen Generation of Organolead Halide Perovskites via Piezocatalysis and Photocatalysis. Advanced Energy Materials, 2019, 9, 1901801.	19.5	134
41	Zinc oxide thin-film random lasers on silicon substrate. Applied Physics Letters, 2004, 84, 3244-3246.	3.3	133
42	Large-scale growth of few-layer two-dimensional black phosphorus. Nature Materials, 2021, 20, 1203-1209.	27.5	133
43	Tribological properties and adhesive strength of DLC coatings prepared under different substrate bias voltages. Wear, 2001, 249, 433-439.	3.1	131
44	Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	130
45	Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. Journal of Crystal Growth, 2003, 259, 335-342.	1.5	129
46	Liquid-phase exfoliation of black phosphorus and its applications. FlatChem, 2017, 2, 15-37.	5.6	129
47	<i>In Situ</i> Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium. ACS Energy Letters, 2020, 5, 2483-2491.	17.4	124
48	Origin of room temperature ferromagnetism in ZnO:Cu films. Journal of Applied Physics, 2006, 99, 086101.	2.5	121
49	Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie - International Edition, 2016, 55, 12356-12360.	13.8	118
50	Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters. Nano Letters, 2016, 16, 309-313.	9.1	115
51	Black Phosphorus Quantum Dots Used for Boosting Light Harvesting in Organic Photovoltaics. Angewandte Chemie - International Edition, 2017, 56, 13717-13721.	13.8	113
52	Wafer-Scale Fabrication of Two-Dimensional PtS ₂ /PtSe ₂ Heterojunctions for Efficient and Broad band Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 40614-40622.	8.0	110
53	Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy, 2017, 42, 26-33.	16.0	109
54	Direct Growth of ZnO Nanocrystals onto the Surface of Porous TiO ₂ Nanotube Arrays for Highly Efficient and Recyclable Photocatalysts. Small, 2009, 5, 2260-2264.	10.0	105

#	Article	IF	CITATIONS
55	Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376, 973-978.	12.6	105
56	Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Applied Physics Letters, 2007, 90, 032509.	3.3	102
57	Giant Anisotropic Raman Response of Encapsulated Ultrathin Black Phosphorus by Uniaxial Strain. Advanced Functional Materials, 2017, 27, 1600986.	14.9	100
58	Preparation and characterization of few-layer MoS ₂ nanosheets and their good nonlinear optical responses in the PMMA matrix. Nanoscale, 2014, 6, 9713-9719.	5.6	98
59	Fabrication of n-ZnO:Alâ^•p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique. Applied Physics Letters, 2005, 86, 241111.	3.3	97
60	Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 2015, 18, 109-117.	16.0	97
61	Hard carbon nanocomposite films with low stress. Diamond and Related Materials, 2001, 10, 1082-1087.	3.9	91
62	Distinctive in-Plane Cleavage Behaviors of Two-Dimensional Layered Materials. ACS Nano, 2016, 10, 8980-8988.	14.6	90
63	Directional edge-emitting UV random laser diodes. Applied Physics Letters, 2006, 89, 221109.	3.3	89
64	Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Applied Physics Letters, 2007, 90, 231106.	3.3	88
65	Emerging opportunities for black phosphorus in energy applications. Materials Today Energy, 2019, 12, 1-25.	4.7	88
66	Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2002, 92, 1845-1849.	2.5	87
67	Bond contraction and lone pair interaction at nitride surfaces. Journal of Applied Physics, 2001, 90, 2615-2617.	2.5	85
68	Highly impermeable and transparent graphene as an ultra-thin protection barrier for Ag thin films. Journal of Materials Chemistry C, 2013, 1, 4956.	5.5	85
69	Tribological characterisation of diamond-like carbon coatings on Co–Cr–Mo alloy for orthopaedic applications. Surface and Coatings Technology, 2001, 146-147, 410-416.	4.8	83
70	An extended `quantum confinement' theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. Journal Physics D: Applied Physics, 2001, 34, 3470-3479.	2.8	82
71	Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer. Journal of Applied Physics, 2012, 111, .	2.5	78
72	Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates. Applied Physics Letters, 2005, 87, 013104.	3.3	77

#	Article	IF	CITATIONS
73	Zn-interstitial-enhanced ferromagnetism in Cu-doped ZnO films. Journal of Magnetism and Magnetic Materials, 2007, 315, 107-110.	2.3	77
74	Metal-containing amorphous carbon films for hydrophobic application. Thin Solid Films, 2001, 398-399, 110-115.	1.8	76
75	Magnetotransport properties of p-type carbon-doped ZnO thin films. Applied Physics Letters, 2009, 95, .	3.3	76
76	Si Hybrid Solar Cells with 13% Efficiency <i>via</i> Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots. ACS Nano, 2016, 10, 815-821.	14.6	76
77	Evolution of visible luminescence in ZnO by thermal oxidation of zinc films. Chemical Physics Letters, 2003, 375, 113-118.	2.6	75
78	Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method. Applied Physics Letters, 2007, 90, 013107.	3.3	74
79	Structural and tribological characterization of multilayer ta-C films prepared by filtered cathodic vacuum arc with substrate pulse biasing. Surface and Coatings Technology, 2000, 132, 228-232.	4.8	73
80	Functionalized 2D nanomaterials for gene delivery applications. Coordination Chemistry Reviews, 2017, 347, 77-97.	18.8	73
81	Aqueous Manganese Dioxide Ink for Paperâ€Based Capacitive Energy Storage Devices. Angewandte Chemie - International Edition, 2015, 54, 6800-6803.	13.8	69
82	Recent progress in group III-nitride nanostructures: From materials to applications. Materials Science and Engineering Reports, 2020, 142, 100578.	31.8	65
83	Near-field focusing properties of zone plates in visible regime - New insights. Optics Express, 2008, 16, 9554.	3.4	64
84	X-ray generation using carbon-nanofiber-based flexible field emitters. Applied Physics Letters, 2006, 88, 103105.	3.3	62
85	Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Advances, 2011, 1, .	1.3	62
86	Structural and mechanical properties of nitrogen ion implanted ultra high molecular weight polyethylene. Surface and Coatings Technology, 2001, 138, 33-38.	4.8	60
87	Photoresponse of polyaniline-functionalized graphene quantum dots. Nanoscale, 2015, 7, 5338-5343.	5.6	60
88	Ferroelectricâ€Driven Performance Enhancement of Graphene Fieldâ€Effect Transistors Based on Vertical Tunneling Heterostructures. Advanced Materials, 2016, 28, 10048-10054.	21.0	58
89	Structural and optical properties of ZnO thin films produced by filtered cathodic vacuum arc. Thin Solid Films, 2001, 398-399, 244-249.	1.8	57
90	Tuning nonlinear optical absorption properties of WS ₂ nanosheets. Nanoscale, 2015, 7, 17771-17777.	5.6	57

#	Article	IF	CITATIONS
91	Potassium doping: Tuning the optical properties of graphene quantum dots. AIP Advances, 2016, 6, .	1.3	57
92	Resonant Raman scattering studies of Fano-type interference in boron doped diamond. Journal of Applied Physics, 2002, 92, 7253-7256.	2.5	56
93	Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate. Applied Physics Letters, 2003, 83, 4288-4290.	3.3	56
94	Optically and electrically tunable graphene quantum dot–polyaniline composite films. Journal of Materials Chemistry C, 2014, 2, 4526-4532.	5.5	56
95	High-Performance Deep Ultraviolet Photodetector Based on NiO/β-Ga2O3 Heterojunction. Nanoscale Research Letters, 2020, 15, 47.	5.7	55
96	Ultraviolet and visible Raman studies of nitrogenated tetrahedral amorphous carbon films. Thin Solid Films, 2000, 366, 169-174.	1.8	54
97	Ferroelectric Polarization Effects on the Transport Properties of Graphene/PMN-PT Field Effect Transistors. Journal of Physical Chemistry C, 2013, 117, 13747-13752.	3.1	53
98	Fabrication of Largeâ€Scale Singleâ€Crystalline PrB ₆ Nanorods and Their Temperatureâ€Dependent Electron Field Emission. Advanced Functional Materials, 2009, 19, 742-747.	14.9	52
99	Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications. Applied Physics Letters, 2001, 79, 1670-1672.	3.3	51
100	Mechanisms for the behavior of carbon films during annealing. Physical Review B, 2004, 70, .	3.2	51
101	Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology, 2005, 16, 1300-1303.	2.6	51
102	Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response. Journal of Physical Chemistry C, 2013, 117, 23108-23116.	3.1	51
103	Microstructure and mechanical properties of nanocomposite amorphous carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1390-1394.	2.1	50
104	Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films. Journal of Crystal Growth, 2003, 252, 265-269.	1.5	50
105	Reliable and flexible carbon-nanofiber-based all-plastic field emission devices. Applied Physics Letters, 2007, 90, 143103.	3.3	50
106	Dependence of electrical and optical properties of ZnO films on substrate temperature. Materials Science in Semiconductor Processing, 2001, 4, 617-620.	4.0	49
107	Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires. Applied Physics Letters, 2009, 94, .	3.3	49
108	Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 3027-3033.	14.6	49

#	Article	IF	CITATIONS
109	Size and Dopant Dependent Single Particle Fluorescence Properties of Graphene Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 17988-17994.	3.1	49
110	Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition. Applied Physics Letters, 2013, 102, .	3.3	48
111	Resonant Raman studies of tetrahedral amorphous carbon films. Diamond and Related Materials, 2001, 10, 76-81.	3.9	47
112	Dielectric suppression and its effect on photoabsorption of nanometric semiconductors. Journal Physics D: Applied Physics, 2001, 34, 2359-2362.	2.8	47
113	Thermally induced sp2 clustering in tetrahedral amorphous carbon (ta-C) films. Journal of Applied Physics, 2004, 96, 6286-6297.	2.5	47
114	Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano-impact testing. Surface and Coatings Technology, 2004, 177-178, 611-615.	4.8	47
115	Amplified Spontaneous Emission from Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation. Advanced Optical Materials, 2016, 4, 1053-1059.	7.3	47
116	Flexible Ultraviolet Random Lasers Based on Nanoparticles. Small, 2005, 1, 956-959.	10.0	46
117	Nanotribological and nanomechanical properties of 5–80 nm tetrahedral amorphous carbon films on silicon. Diamond and Related Materials, 2005, 14, 1535-1542.	3.9	46
118	Self-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochimica Acta, 2019, 305, 37-46.	5.2	46
119	Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer. Applied Physics Letters, 2005, 86, 031112.	3.3	45
120	Stable ferromagnetism in p-type carbon-doped ZnO nanoneedles. Applied Physics Letters, 2009, 95, .	3.3	45
121	Polyethylenimine-Modified Graphene Oxide as a Novel Antibacterial Agent and Its Synergistic Effect with Daptomycin for Methicillin-Resistant <i>Staphylococcus aureus</i> . ACS Applied Nano Materials, 2018, 1, 1811-1818.	5.0	45
122	Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique. Thin Solid Films, 2004, 458, 15-19.	1.8	44
123	Mechanistic Understanding of Excitation-Correlated Nonlinear Optical Properties in MoS ₂ Nanosheets and Nanodots: The Role of Exciton Resonance. ACS Photonics, 2016, 3, 2434-2444.	6.6	44
124	Liquidâ€phase exfoliation of violet phosphorus for electronic applications. SmartMat, 2021, 2, 226-233.	10.7	44
125	Functionalization of graphene quantum dots by fluorine: Preparation, properties, application, and their mechanisms. Applied Physics Letters, 2017, 110, .	3.3	43
126	Anisotropic Signal Processing with Trigonal Selenium Nanosheet Synaptic Transistors. ACS Nano, 2020, 14, 10018-10026.	14.6	43

#	Article	IF	CITATIONS
127	High-temperature random lasing in ZnO nanoneedles. Applied Physics Letters, 2006, 89, 011103.	3.3	42
128	Simultaneous formation of visible and ultraviolet random lasings in ZnO films. Applied Physics Letters, 2006, 89, 021110.	3.3	42
129	<i>In situ</i> observation of the thermal stability of black phosphorus. 2D Materials, 2017, 4, 025001.	4.4	42
130	Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nature Communications, 2022, 13, 138.	12.8	42
131	Blue electroluminescence from tris-(8-hydroxyquinoline) aluminum thin film. Chemical Physics Letters, 2000, 325, 420-424.	2.6	41
132	Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications. Surface and Coatings Technology, 2002, 154, 289-293.	4.8	41
133	Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods. Applied Physics Letters, 2007, 90, 193118.	3.3	41
134	Ultraviolet Electroluminescence from Randomly Assembled <i>n</i> -SnO ₂ Nanowires <i>p</i> -GaN:Mg Heterojunction. ACS Applied Materials & Interfaces, 2010, 2, 1191-1194.	8.0	41
135	Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device. ACS Nano, 2017, 11, 4564-4570.	14.6	41
136	High-Temperature Lasing Characteristics of ZnO Epilayers. Advanced Materials, 2006, 18, 771-774.	21.0	40
137	Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission. Current Applied Physics, 2009, 9, 144-150.	2.4	40
138	A deep ultraviolet to near-infrared photoresponse from glucose-derived graphene oxide. Journal of Materials Chemistry C, 2014, 2, 6971-6977.	5.5	40
139	Hydroelectric generator from transparent flexible zinc oxide nanofilms. Nano Energy, 2017, 32, 125-129.	16.0	40
140	Ultraviolet lasing of ZnO whiskers prepared by catalyst-free thermal evaporation. Chemical Physics Letters, 2003, 377, 329-332.	2.6	39
141	Strain dependence of lasing mechanisms in ZnO epilayers. Applied Physics Letters, 2005, 86, 261111.	3.3	39
142	Ferromagnetic Cu-doped AlN nanorods. Nanotechnology, 2007, 18, 105601.	2.6	39
143	Intrinsic Conductance of Domain Walls in BiFeO ₃ . Advanced Materials, 2019, 31, e1902099.	21.0	39
144	Laserâ€Assisted Ultrafast Exfoliation of Black Phosphorus in Liquid with Tunable Thickness for Liâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1903490.	19.5	39

#	Article	IF	CITATIONS
145	Design and fabrication of ZnO light-emitting devices using filtered cathodic vacuum arc technique. Journal of Crystal Growth, 2006, 287, 204-212.	1.5	37
146	Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission. ACS Applied Materials & 2016, 10, 2016, 8, 472-479.	8.0	37
147	MnSe2 nanocubes as an anode material for sodium-ion batteries. Materials Today Energy, 2018, 10, 62-67.	4.7	37
148	Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors. Journal of the American Chemical Society, 2022, 144, 1910-1920.	13.7	37
149	Improved thin films of pentacene via pulsed laser deposition at elevated substrate temperatures. Applied Physics Letters, 1996, 69, 2231-2233.	3.3	36
150	Facile preparation of sulphur-doped graphene quantum dots for ultra-high performance ultraviolet photodetectors. New Journal of Chemistry, 2017, 41, 10447-10451.	2.8	36
151	Mechanical and tribological characterization of diamond-like carbon coatings on orthopedic materials. Diamond and Related Materials, 2001, 10, 1043-1048.	3.9	35
152	Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique. Surface and Coatings Technology, 2001, 138, 250-255.	4.8	35
153	Polymeric Carbon Nitride Nanosheets/Graphene Hybrid Phototransistors with High Responsivity. Advanced Optical Materials, 2016, 4, 555-561.	7.3	35
154	Inkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy storage. Materials Today Energy, 2019, 12, 155-160.	4.7	35
155	Carbon nanotubes synthesized by biased thermal chemical vapor deposition as an electron source in an x-ray tube. Applied Physics Letters, 2005, 86, 123115.	3.3	34
156	<i>InÂSitu</i> Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale. Physical Review Letters, 2020, 125, 246102.	7.8	34
157	Ferroelectricity and Rashba effect in 2D organic–inorganic hybrid perovskites. Trends in Chemistry, 2021, 3, 716-732.	8.5	34
158	Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc. Diamond and Related Materials, 2004, 13, 459-464.	3.9	33
159	Magnetotransport Properties of Layered Topological Material ZrTe ₂ Thin Film. ACS Nano, 2019, 13, 6008-6016.	14.6	33
160	Raman spectroscopy of carbon nitride films deposited using the filtered cathodic vacuum-arc technique combined with a radio-frequency nitrogen-ion beam. Applied Physics A: Materials Science and Processing, 2001, 73, 341-345.	2.3	32
161	Surface energy of amorphous carbon films containing iron. Journal of Applied Physics, 2001, 89, 7814-7819.	2.5	32
162	Structural and mechanical properties of Ti-containing diamond-like carbon films deposited by filtered cathodic vacuum arc. Thin Solid Films, 2002, 408, 183-187.	1.8	32

#	Article	IF	CITATIONS
163	Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 906-910.	2.1	32
164	Study of mechanical properties and stress of tetrahedral amorphous carbon films prepared by pulse biasing. Surface and Coatings Technology, 2005, 195, 338-343.	4.8	32
165	Effect of frequency and pulse width on the properties of ta:C films prepared by FCVA together with substrate pulse biasing. Thin Solid Films, 2002, 420-421, 62-69.	1.8	31
166	Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma. Diamond and Related Materials, 2003, 12, 2072-2076.	3.9	31
167	Flexographic printing-assisted fabrication of ZnO nanowire devices. Nanotechnology, 2013, 24, 195602.	2.6	31
168	Enhanced Photocatalytic Activity of WS2 Film by Laser Drilling to Produce Porous WS2/WO3 Heterostructure. Scientific Reports, 2017, 7, 3125.	3.3	31
169	On the deposition mechanism of a-C:H films by plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2000, 135, 27-33.	4.8	30
170	Temperature-dependent photoluminescence and electron field emission properties of AlN nanotip arrays. Applied Physics Letters, 2009, 94, .	3.3	30
171	Preferential orientation of titanium carbide films deposited by a filtered cathodic vacuum arc technique. Surface and Coatings Technology, 2001, 138, 301-306.	4.8	29
172	Influence of substrate bias on the structure and properties of (Ti, Al)N films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 736-742.	2.1	29
173	Effects of N ion energy on titanium nitride films deposited by ion assisted filtered cathodic vacuum arc. Chemical Physics Letters, 2003, 374, 264-270.	2.6	29
174	A comparative study between pure and Al-containing amorphous carbon films prepared by FCVA technique together with high substrate pulse biasing. Diamond and Related Materials, 2003, 12, 2032-2036.	3.9	29
175	Optical properties of titania films prepared by off-plane filtered cathodic vacuum arc. Journal of Crystal Growth, 2004, 268, 543-546.	1.5	29
176	Room-temperature growth of carbon nanofibers on plastic substrates. Surface Science, 2006, 600, 3663-3667.	1.9	29
177	Exciton radiative lifetime in ZnO quantum dots embedded in SiOx matrix. Applied Physics Letters, 2006, 88, 221903.	3.3	29
178	Lasing in electrodeposited ZnO inverse opal. Applied Physics Letters, 2007, 91, 161116.	3.3	29
179	Growth of single-crystalline SmB ₆ nanowires and their temperature-dependent electron field emission. Journal Physics D: Applied Physics, 2009, 42, 135403.	2.8	29
180	Largeâ€Area Tellurium/Germanium Heterojunction Grown by Molecular Beam Epitaxy for Highâ€Performance Selfâ€Powered Photodetector. Advanced Optical Materials, 2021, 9, 2101052.	7.3	29

#	Article	IF	CITATIONS
181	Structural properties and nanoindentation of AlN films by a filtered cathodic vacuum arc at low temperature. Journal Physics D: Applied Physics, 2004, 37, 1472-1477.	2.8	28
182	Ferromagnetic Cu doped ZnO as an electron injector in heterojunction light emitting diodes. Journal of Applied Physics, 2008, 104, .	2.5	28
183	High performance ultraviolet photodetectors based on ZnO nanoflakes/PVK heterojunction. Applied Physics Letters, 2016, 109, .	3.3	28
184	Influence of deposition temperature on the structure and internal stress of TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1270-1274.	2.1	27
185	Optical properties of aluminium oxide thin films prepared at room temperature by off-plane filtered cathodic vacuum arc system. Thin Solid Films, 2004, 447-448, 14-19.	1.8	27
186	Synthesis, morphology and random laser action of ZnO nanostructures. Surface Science, 2007, 601, 2660-2663.	1.9	27
187	Ultraviolet electroluminescence from two-dimensional ZnO nanomesh/GaN heterojunction light emitting diodes. Applied Physics Letters, 2011, 98, 263101.	3.3	27
188	Time and temperature-dependent changes in the structural properties of tetrahedral amorphous carbon films. Surface and Coatings Technology, 2000, 130, 248-251.	4.8	26
189	Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique. Journal of Applied Physics, 2007, 101, 094905.	2.5	25
190	Deposition of iron containing amorphous carbon films by filtered cathodic vacuum arc technique. Diamond and Related Materials, 2001, 10, 2018-2023.	3.9	24
191	Synthesis of Superhard and Elastic Carbon Nitride Films by Filtered Cathodic Vacuum arc Combined with Radio Frequency Ion Beam Source. Journal of Materials Research, 2002, 17, 521-524.	2.6	24
192	Room-Temperature Growth and Applications of Carbon Nanofibers: A Review. IEEE Nanotechnology Magazine, 2006, 5, 587-594.	2.0	24
193	Local measurement of secondary electron emission from ZnO-coated carbon nanotubes. Nanotechnology, 2006, 17, 1564-1567.	2.6	24
194	Electron field emission from Ti-containing tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2000, 88, 6842-6847.	2.5	23
195	Improving diamond–metal adhesion with graded TiCN interlayers. Journal of Applied Physics, 2002, 91, 2051-2054.	2.5	23
196	Intrinsic mechanical properties of diamond-like carbon thin films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2004, 95, 3509-3515.	2.5	23
197	Magnetic and Thermal Expansion Properties of Vertically Aligned Fe Nanotubes Fabricated by Electrochemical Method. Journal of Physical Chemistry C, 2008, 112, 4168-4171.	3.1	23
198	Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation. Optical Materials Express, 2012, 2, 490.	3.0	23

#	Article	IF	CITATIONS
199	Efficient hole transfer from monolayer WS ₂ to ultrathin amorphous black phosphorus. Nanoscale Horizons, 2019, 4, 236-242.	8.0	23
200	Structural and magnetic properties of iron-nitride thin films deposited using a filtered cathodic vacuum arc. Thin Solid Films, 2005, 478, 61-66.	1.8	22
201	Self-regenerative field emission source. Applied Physics Letters, 2005, 87, 193102.	3.3	22
202	Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles. Applied Physics Letters, 2006, 89, 081107.	3.3	22
203	Thickness-dependent optical properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 2007, 18, 343-346.	2.2	22
204	Field emission from a single carbon nanofiber at sub 100nm gap. Applied Physics Letters, 2008, 93, .	3.3	22
205	n- and p-Type modulation of ZnO nanomesh coated graphene field effect transistors. Nanoscale, 2012, 4, 3118.	5.6	22
206	Solution processable high-performance infrared organic photodetector by iodine doping. RSC Advances, 2016, 6, 45166-45171.	3.6	22
207	Synthesis, properties, and applications of 2D amorphous inorganic materials. Journal of Applied Physics, 2020, 127, .	2.5	22
208	Impurityâ€Induced Robust Trionic Effect in Layered Violet Phosphorus. Advanced Optical Materials, 2022, 10, 2101538.	7.3	22
209	Deposition of carbon nitride films by filtered cathodic vacuum arc combined with radio frequency ion beam source. Diamond and Related Materials, 2000, 9, 2010-2018.	3.9	21
210	Influence of nitrogen ion energy on the Raman spectroscopy of carbon nitride films. Diamond and Related Materials, 2001, 10, 2137-2144.	3.9	21
211	Plasma immersion ion implantation of poly(tetrafluoroethylene). Surface and Coatings Technology, 2004, 177-178, 483-488.	4.8	21
212	Influence of deposition pressure on the composition and structure of carbon nitride films deposited by direct current plasma assisted pulsed laser ablation. Applied Surface Science, 2001, 182, 32-39.	6.1	20
213	Influence of substrate bias on the microstructure and internal stress in Cu films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2102-2108.	2.1	20
214	Intense and stable blue-light emission of Pb(ZrxTi1â^'x)O3. Applied Physics Letters, 2001, 79, 1082-1084.	3.3	20
215	Recent Advances in Graphene Homogeneous p–n Junction for Optoelectronics. Advanced Materials Technologies, 2019, 4, 1900007.	5.8	20
216	Infrared Nanoimaging of Surface Plasmons in Type-II Dirac Semimetal PtTe ₂ Nanoribbons. ACS Nano, 2020, 14, 6276-6284.	14.6	20

#	Article	IF	CITATIONS
217	Stress relief of tetrahedral amorphous carbon films by post-deposition thermal annealing. Surface and Coatings Technology, 1999, 120-121, 448-452.	4.8	19
218	Pin-on-disk characterization of amorphous carbon films prepared by filtered cathodic vacuum arc technique. Diamond and Related Materials, 2000, 9, 819-824.	3.9	19
219	Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films. Journal of Physics Condensed Matter, 2003, 15, 7707-7715.	1.8	19
220	Field electron emission of double walled carbon nanotube film prepared by drop casting method. Solid-State Electronics, 2007, 51, 788-792.	1.4	19
221	In situ TEM study of the sodiation/desodiation mechanism of MnO2 nanowire with gel-electrolytes. Energy Storage Materials, 2018, 15, 91-97.	18.0	19
222	In2S3 Quantum Dots: Preparation, Properties and Optoelectronic Application. Nanoscale Research Letters, 2019, 14, 161.	5.7	19
223	a-SiC:H thin film visible light-emitting diodes with highly conductive wide band gap a-SiC:H as the carrier injection layers. Journal of Non-Crystalline Solids, 1993, 164-166, 813-816.	3.1	18
224	Direct interband transitions in tris-(8-hydroxyquinoline) aluminum thin films. Journal of Applied Physics, 2001, 89, 1082-1086.	2.5	18
225	Structural and tribological properties of hard carbon film synthesized by heat-treatment of a polymer on graphite substrate. Thin Solid Films, 2001, 389, 161-166.	1.8	18
226	Influence of substrate bias on the structure and mechanical properties of ta-C:W films deposited by filtered cathodic vacuum arc. Surface and Coatings Technology, 2001, 146-147, 398-404.	4.8	18
227	Carbon arc plasma transport through different off-plane double bend filters. Surface and Coatings Technology, 2002, 150, 50-56.	4.8	18
228	ZnO thin films produced by filtered cathodic vacuum arc technique. Ceramics International, 2004, 30, 1669-1674.	4.8	18
229	Ferromagnetic anisotropy of carbon-doped ZnO nanoneedles fabricated by ion beam technique. Applied Surface Science, 2012, 258, 5486-5489.	6.1	18
230	Theoretical and Experimental Investigations on the Growth of SnS van der Waals Epitaxies on Graphene Buffer Layer. Crystal Growth and Design, 2013, 13, 4755-4759.	3.0	18
231	Amorphous two-dimensional black phosphorus with exceptional photocarrier transport properties. 2D Materials, 2017, 4, 025063.	4.4	18
232	Anomalous fracture in two-dimensional rhenium disulfide. Science Advances, 2020, 6, .	10.3	18
233	Facile synthesis of ZnS quantum dots at room temperature for ultra-violet photodetector applications. Chemical Physics Letters, 2020, 742, 137127.	2.6	18
234	Field emission from cobalt-containing amorphous carbon composite films heat-treated in an acetylene ambient. Applied Physics Letters, 2000, 77, 2021-2023.	3.3	17

#	Article	IF	CITATIONS
235	Field emission properties and surface structure of nickel containing amorphous carbon. Applied Surface Science, 2001, 180, 185-190.	6.1	17
236	Thickness-dependent magnetotransport properties in 1T VSe ₂ single crystals prepared by chemical vapor deposition. Nanotechnology, 2020, 31, 145712.	2.6	17
237	Topological phase change transistors based on tellurium Weyl semiconductor. Science Advances, 2022, 8, .	10.3	17
238	Self-organized carbon nanotubes grown at the grain boundary of iron-nitride. Carbon, 2005, 43, 654-657.	10.3	16
239	Edge-Emitting Vertically Aligned ZnO Nanorods Random Laser on Plastic Substrate. IEEE Photonics Technology Letters, 2007, 19, 1792-1794.	2.5	16
240	Structural and optical properties of wurtzite InN grown on Si(111). Thin Solid Films, 2007, 515, 4619-4623.	1.8	16
241	High photoelectrochemical activity and stability of Au-WS2/silicon heterojunction photocathode. Solar Energy Materials and Solar Cells, 2018, 174, 300-306.	6.2	16
242	Facile synthesis of AgBiS ₂ nanocrystals for high responsivity infrared detectors. RSC Advances, 2018, 8, 39203-39207.	3.6	16
243	Structural and electrical transport properties of excimer (ArF)-laser-crystallized silicon carbide. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 72, 323-333.	0.6	15
244	Deposition of (Ti, Al)N films by filtered cathodic vacuum arc. Thin Solid Films, 2000, 379, 76-82.	1.8	15
245	Field emission from metal-containing amorphous carbon composite films. Diamond and Related Materials, 2001, 10, 1727-1731.	3.9	15
246	The synthesis of carbon nanotubes and zirconium carbide composite films on a glass substrate. Nanotechnology, 2004, 15, 663-666.	2.6	15
247	Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides. Optics Express, 2008, 16, 16113.	3.4	15
248	Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie, 2016, 128, 12544-12548.	2.0	15
249	Log-periodic quantum magneto-oscillations and discrete-scale invariance in topological material HfTe5. National Science Review, 2019, 6, 914-920.	9.5	15
250	Tantalum disulfide quantum dots: preparation, structure, and properties. Nanoscale Research Letters, 2020, 15, 20.	5.7	15
251	Plasma flow simulation in an off-plane double bend magnetic filter. Surface and Coatings Technology, 2000, 133-134, 593-597.	4.8	14
252	Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc. Optical Materials, 2004, 27, 465-469.	3.6	14

#	Article	IF	CITATIONS
253	Exciton related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique. Applied Physics Letters, 2006, 88, 191112.	3.3	14
254	Carbon nanotubes grown on cobalt-containing amorphous carbon composite films. Diamond and Related Materials, 2006, 15, 171-175.	3.9	14
255	The formation characteristics of closed-loop random cavities inside highly disordered ZnO polycrystalline thin films. Applied Physics Letters, 2006, 88, 121126.	3.3	14
256	Roomâ€ŧemperature ferromagnetism of Cuâ€doped ZnO films deposited by helicon magnetron sputtering. Physica Status Solidi (B): Basic Research, 2009, 246, 1243-1247.	1.5	14
257	Short circuit current improvement in planar heterojunction organic solar cells by multijunction charge transfer. Applied Physics Letters, 2012, 100, .	3.3	14
258	Magnetic properties of Mgâ€doped AlN zigzag nanowires. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1988-1992.	1.8	14
259	Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector. AIP Advances, 2016, 6, .	1.3	14
260	Selenium quantum dots: Preparation, structure, and properties. Applied Physics Letters, 2017, 110, .	3.3	14
261	Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie, 2022, 134, .	2.0	14
262	Electrical properties of TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2000.	1.6	13
263	Properties of amorphous ZrOx thin films deposited by filtered cathodic vacuum arc. Journal of Non-Crystalline Solids, 2003, 332, 185-189.	3.1	13
264	Nitrogen-ion-energy dependent optical and structural properties of AlN films obtained using a filtered cathodic vacuum arc. Journal Physics D: Applied Physics, 2003, 36, 2543-2547.	2.8	13
265	Optical and electrical properties of amorphous carbon films deposited using filtered cathodic vacuum arc with pulse biasing. Thin Solid Films, 2004, 447-448, 148-152.	1.8	13
266	Catalytic chemical vapor deposition of vertically aligned carbon nanotubes on iron nanoislands formed from Fe+-implanted SiO2 films. Carbon, 2004, 42, 3030-3033.	10.3	13
267	The reversible wettability of Ti containing amorphous carbon films by UV irradiation. Surface and Coatings Technology, 2005, 198, 184-188.	4.8	13
268	The structure and annealing properties of multilayer carbon films. Surface and Coatings Technology, 2005, 198, 217-222.	4.8	13
269	Formation conditions of random laser cavities in annealed ZnO epilayers. IEEE Journal of Quantum Electronics, 2005, 41, 970-973.	1.9	13
270	Enhanced Secondary Electron Emission from Groupâ€III Nitride/ZnO Coaxial Nanorod Heterostructures. Small, 2006, 2, 736-740.	10.0	13

#	Article	IF	CITATIONS
271	Synthesis and random laser application of ZnO nano-walls: a review. International Journal of Nanotechnology, 2009, 6, 723.	0.2	13
272	Ultraviolet Laser Action in Ferromagnetic Zn1â^'x Fe x O Nanoneedles. Nanoscale Research Letters, 2010, 5, 247-51.	5.7	13
273	Solution-processable graphene oxide as an insulator layer for metal–insulator–semiconductor silicon solar cells. RSC Advances, 2013, 3, 17918.	3.6	13
274	Photodetectors: Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications (Adv. Funct. Mater. 1/2019). Advanced Functional Materials, 2019, 29, 1970005.	14.9	13
275	Tunable Schottky barriers in ultrathin black phosphorus field effect transistors via polymer capping. 2D Materials, 2019, 6, 024001.	4.4	13
276	Deposition of permalloy films by filtered cathodic vacuum arc. Thin Solid Films, 2003, 443, 115-119.	1.8	12
277	Space-charge-limited bipolar flow in a nano-gap. Applied Physics Letters, 2005, 87, 193112.	3.3	12
278	Polarization characteristics of ZnO rib waveguide random lasers. Applied Physics Letters, 2006, 88, 091116.	3.3	12
279	Low-temperature fabrication and random laser action of doped zinc oxide nanoneedles. Surface Science, 2007, 601, 4459-4464.	1.9	12
280	Black Phosphorus Quantum Dots Used for Boosting Light Harvesting in Organic Photovoltaics. Angewandte Chemie, 2017, 129, 13905-13909.	2.0	12
281	Ultrasensitive broadband photodetectors based on two-dimensional Bi ₂ O ₂ Te films. Journal of Materials Chemistry C, 2021, 9, 13713-13721.	5.5	12
282	Infrared photodetector based on GeTe nanofilms with high performance. Optics Letters, 2020, 45, 1108.	3.3	12
283	Filtered cathodic vacuum arc deposition of thin film copper. Thin Solid Films, 2001, 398-399, 539-543.	1.8	11
284	Field emission from tetrahedral amorphous carbon films with various surface morphologies. Diamond and Related Materials, 2001, 10, 1515-1522.	3.9	11
285	Rapid thermal annealing study on the metal containing amorphous carbon films. Diamond and Related Materials, 2003, 12, 2093-2098.	3.9	11
286	Ultraviolet Lasing Phenomenon of Zinc Oxide Hexagonal Microtubes. Japanese Journal of Applied Physics, 2004, 43, 5273-5278.	1.5	11
287	Theoretical Investigation of Excitonic Gain in <tex>\$hbox ZnO-Mg_xhbox Zn_1-xhbox O\$</tex> Strained Quantum Wells. IEEE Journal of Quantum Electronics, 2006, 42, 455-463.	1.9	11
288	Influence of Surface Roughness on the Lasing Performance of Highly Disordered ZnO Films. IEEE Photonics Technology Letters, 2006, 18, 2380-2382.	2.5	11

#	Article	IF	CITATIONS
289	Wide tunable ultraviolet random lasing action from ZnMgo thin films. Journal of Crystal Growth, 2009, 312, 16-18.	1.5	11
290	Electroluminescence from AlN nanowires grown on p-SiC substrate. Applied Physics Letters, 2010, 97, .	3.3	11
291	Nonlithographic Fabrication of Crystalline Silicon Nanodots on Graphene. Journal of Physical Chemistry C, 2012, 116, 532-537.	3.1	11
292	Advances in Twoâ€Ðimensional Layered Materials. Advanced Functional Materials, 2017, 27, 1701403.	14.9	11
293	Large-area uniform electron doping of graphene by Ag nanofilm. AIP Advances, 2017, 7, .	1.3	11
294	Kinetically controlled redox behaviors of K _{0.3} MnO ₂ electrodes for high performance sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 10803-10812.	10.3	11
295	High deposition rate of aluminum oxide film by off-plane double bend filtered cathodic vacuum arc technique. Thin Solid Films, 2001, 386, 1-5.	1.8	10
296	Substrate bias dependence of the structure and internal stress of TiN films deposited by the filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1327-1331.	2.1	10
297	Photoresponse of wafer-scale palladium diselenide films prepared by selenization method. Journal Physics D: Applied Physics, 2020, 53, 065102.	2.8	10
298	Ag ₂ S monolayer: an ultrasoft inorganic Lieb lattice. Nanoscale, 2021, 13, 14008-14015.	5.6	10
299	Effect of heavy ion implantation on the properties of tetrahedral amorphous carbon film. Thin Solid Films, 2000, 377-378, 269-273.	1.8	9
300	Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties. Diamond and Related Materials, 2001, 10, 878-882.	3.9	9
301	Field emission from polymer-converted carbon films by ultraviolet radiation. Applied Physics Letters, 2001, 78, 2009-2011.	3.3	9
302	Phase transformation of diamond films during electron field emission. Applied Surface Science, 2001, 173, 282-289.	6.1	9
303	Stress and its effect on optical properties of AlN nanorods. Applied Physics Letters, 2009, 95, 233105.	3.3	9
304	Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature. Nanoscale, 2015, 7, 13420-13426.	5.6	9
305	SnS ₂ quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector. Chinese Physics B, 2019, 28, 037801.	1.4	9
306	Preparation and photoelectric properties of cadmium sulfide quantum dots. Chinese Physics B, 2019, 28, 047803.	1.4	9

#	Article	IF	CITATIONS
307	Infrared photovoltaic detector based on p-GeTe/n-Si heterojunction. Nanoscale Research Letters, 2020, 15, 138.	5.7	9
308	Annealing effect on electron field-emission properties of diamond-like nanocomposite films. Journal of Applied Physics, 2000, 88, 5087-5092.	2.5	8
309	Aligned InN nanofingers prepared by the ion-beam assisted filtered cathodic vacuum arc technique. Nanotechnology, 2005, 16, 3069-3073.	2.6	8
310	Field electron emission of multiwalled carbon nanotubes and carbon nanofibers grown from Camphor. Solid-State Electronics, 2008, 52, 941-945.	1.4	8
311	Microfluidic flow direction control using continuous-wave laser. Sensors and Actuators A: Physical, 2012, 188, 329-334.	4.1	8
312	Mixed dimensional 0D/3D perovskite heterostructure for efficient green light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 14318-14326.	5.5	8
313	Self-supporting CoP-C nanosheet arrays derived from a metal–organic framework as synergistic catalysts for efficient water splitting. Dalton Transactions, 2021, 50, 17549-17558.	3.3	8
314	Optoelectronic properties of highly conductive microcrystalline SiC produced by laser crystallisation of amorphous SiC. Journal of Non-Crystalline Solids, 1996, 198-200, 907-910.	3.1	7
315	Design and Fabrication of Zinc Oxide Thin-Film Ridge Waveguides on Silicon Substrate With Ultraviolet Amplified Spontaneous Emission. IEEE Journal of Quantum Electronics, 2004, 40, 406-412.	1.9	7
316	Tellurium quantum dots: Preparation and optical properties. Applied Physics Letters, 2017, 111, .	3.3	7
317	Enhancement of photo-electrochemical reactions in MAPbI3/Au. Materials Today Energy, 2018, 9, 303-310.	4.7	7
318	Edgeâ€Orientation Dependent Nanoimaging of Midâ€Infrared Waveguide Modes in Highâ€Index PtSe ₂ . Advanced Optical Materials, 2021, 9, 2100294.	7.3	7
319	Memory switching in amorphous silicon-rich silicon carbide. Electronics Letters, 1999, 35, 1976.	1.0	6
320	Fabrication of smooth amorphous carbon micro-cantilevers by lift-off. Sensors and Actuators B: Chemical, 2004, 98, 275-281.	7.8	6
321	Microstructure effect on field emission from tetrahedral amorphous carbon films annealed in nitrogen and acetylene ambient. Diamond and Related Materials, 2004, 13, 133-138.	3.9	6
322	Field emission from nanoforest carbon nanotubes grown on cobalt-containing amorphous carbon composite films. Journal of Applied Physics, 2007, 101, 033524.	2.5	6
323	Surface magnetism of Mg doped AlN: a first principle study. Journal of Physics Condensed Matter, 2014, 26, 435801.	1.8	6

Pulsed Lasers: Black Phosphorus-Polymer Composites for Pulsed Lasers (Advanced Optical Materials) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
325	Midâ€Infrared Photodetectors: Van der Waals Epitaxial Growth of Mosaicâ€Like 2D Platinum Ditelluride Layers for Roomâ€Temperature Midâ€Infrared Photodetection up to 10.6 µm (Adv. Mater. 52/2020). Advanced Materials, 2020, 32, 2070394.	21.0	6
326	Annealing effects on field emission properties of tetrahedral amorphous carbon films. Applied Surface Science, 2001, 174, 283-288.	6.1	5
327	Secondary electron emission properties of III-nitride/ZnO coaxial heterostructures under ion and X-ray bombardment. Nuclear Instruments & Methods in Physics Research B, 2007, 254, 55-58.	1.4	5
328	Multi-purpose ionization gas sensing devices using carbon nanofibers on plastic substrates. Diamond and Related Materials, 2008, 17, 1959-1962.	3.9	5
329	Copper defects inside AlN:Cu nanorods – XANES and LAPW study. Journal of Physics: Conference Series, 2009, 190, 012136.	0.4	5
330	Superior Dielectric Screening in Two-Dimensional MoS ₂ Spirals. ACS Applied Materials & Interfaces, 2017, 9, 37941-37946.	8.0	5
331	Photodetectors: Fast, Selfâ€Driven, Air‣table, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction (Adv. Funct. Mater. 16/2018). Advanced Functional Materials, 2018, 28, 1870106.	14.9	5
332	Micromechanical properties of carbon nitride films deposited by radio-frequency-assisted filtered cathodic vacuum arc. Applied Physics A: Materials Science and Processing, 2002, 75, 375-380.	2.3	4
333	Synthesis, optical properties and functional applications of ZnO nano-materials: A review. , 2008, , .		4
334	Optical and ferromagnetic characteristics of Mn doped ZnO thin films grown by filtered cathodic vacuum arc technique. Thin Solid Films, 2010, 518, 7048-7052.	1.8	4
335	van der Waals epitaxial growth and high-temperature ferrimagnetism in ultrathin crystalline magnetite (Fe ₃ O ₄) nanosheets. Journal of Materials Chemistry C, 2022, 10, 7058-7065.	5.5	4
336	Study of plasma efficiency as a function of arc current in filtered cathodic vacuum arc systems. Diamond and Related Materials, 2001, 10, 947-951.	3.9	3
337	Raman spectroscopy and x-ray diffraction studies of (Ti,Al)N films deposited by filtered cathodic vacuum arc at room temperature. Journal of Applied Physics, 2001, 89, 6192-6197.	2.5	3
338	Characterization of (Ti, Al)N films deposited by off-plane double bend filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 557-562.	2.1	3
339	Studies of copper vacuum arc plasma through an off-plane double-bend filtering duct. Surface and Coatings Technology, 2003, 169-170, 482-486.	4.8	3
340	Filtered cathodic vacuum arc deposition of copper thin film. Electronics Letters, 2000, 36, 1205.	1.0	2
341	Influence of high-substrate-bias voltage on the characteristics of DLC coatings. , 2000, 4227, 157.		2
342	Dependences of amorphous structure on bias voltage and annealing in silicon–carbon alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 20-24.	3.5	2

#	ARTICLE	IF	CITATIONS
343	Field emission from heat-treated cobalt-containing amorphous carbon composite films on glass substrate. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 950.	1.6	2
344	Characterization of Thick Amorphous Carbon Films Formed by Pulse Bias Filtered Cathodic Vacuum Arc. Japanese Journal of Applied Physics, 2006, 45, 7854-7859.	1.5	2
345	Vertically selfâ€aligned conical carbon nanofibers by pulsed discharge plasma chemical vapour deposition and its field electron emission. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3096-3101.	1.8	2
346	Suppression of Random Lasing Modes in Polycrystalline ZnO Thin-Film by Using Distributed Bragg Reflector. IEEE Photonics Technology Letters, 2009, 21, 549-551.	2.5	2
347	Properties and Applications of 2-Dimensional Layered Materials. ECS Journal of Solid State Science and Technology, 2016, 5, Y7-Y7.	1.8	2
348	Effect of Uniaxial Strain on Low Frequency Raman Modes in Few Layers Molybdenum Disulfide. ECS Journal of Solid State Science and Technology, 2016, 5, Q3033-Q3037.	1.8	2
349	Preparation and photoelectric properties of SnOx films with tunable optical bandgap. Chemical Physics Letters, 2020, 739, 137039.	2.6	2
350	Liquid-phase catalytic growth of graphene. Journal of Materials Chemistry C, 2022, 10, 571-578.	5.5	2
351	Low temperature deposition of tantalum diffusion barrier by filtered cathodic vacuum arc. Journal Physics D: Applied Physics, 2003, 36, 1355-1359.	2.8	1
352	Effects of varying mechanical deformations on the relationship between mesotexture and current percolation in (Bi, Pb)2Sr2Ca2Cu3O10/Ag superconductor tapes. Superconductor Science and Technology, 2003, 16, 885-892.	3.5	1
353	Polycrystalline InN thin films prepared by ion-beam-assisted filtered cathodic vacuum arc technique. Journal of Crystal Growth, 2005, 282, 271-278.	1.5	1
354	Intense photoluminescence emission from amorphous indium oxynitride thin films by filtered cathodic vacuum arc technique. , 2009, , .		1
355	Random laser action in 3-D ZnO nanostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S154-S157.	0.8	1
356	Aqueous Manganese Dioxide Ink for High Performance Capacitive Energy Storage Devices. MRS Advances, 2016, 1, 3573-3578.	0.9	1
357	Unveiling the Critical Intermediate Stages During Chemical Vapor Deposition of Two-Dimensional Rhenium Diselenide. Chemistry of Materials, 2021, 33, 7039-7046.	6.7	1
358	Review on optofluidic microreactors forÂphotocatalysis. Reviews in Chemical Engineering, 2022, .	4.4	1
359	Tuning dielectric constant and Young's modulus by nanofabrication. , 2000, 4228, 302.		0

360 Investigation of the ultraviolet lasing characteristics of zinc hexagonal microtubes. , 0, , .

#	Article	IF	CITATIONS
361	<title>Formation of random laser action in ZnO thin films</title> . , 2004, 5774, 488.		0
362	Mechanisms for the Behaviour of Amorphous Carbon Films During Annealing. Microscopy and Microanalysis, 2004, 10, 614-615.	0.4	0
363	Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing. , 2005, 5650, 35.		Ο
364	GROWTH OF CARBON NANOTUBE BUNDLES ON MICROSCRATCHED SURFACES. International Journal of Nanoscience, 2005, 04, 419-422.	0.7	0
365	GROWTH AND STRUCTURAL STUDY OF NANOCRYSTALLINE TITANIUM OXIDE AND ZIRCONIUM OXIDE THIN FILMS DEPOSITED AT LOW TEMPERATURES. International Journal of Nanoscience, 2005, 04, 795-801.	0.7	Ο
366	Free-Excitonic Gain in ZnO/MgxZn1-xO Strained Quantum Wells. , 2006, , .		0
367	Development of Highly Efficient and High Speed X-ray Detectors Using Modern Nanomaterials. AIP Conference Proceedings, 2007, , .	0.4	Ο
368	Temperature dependent exciton radiative lifetime in ZnO nanorods. International Journal of Nanotechnology, 2007, 4, 404.	0.2	0
369	Ferromagnetism in Cu-Doped ZnO Films Prepared by Filtered Cathodic Vacuum Arc Technique. ECS Transactions, 2008, 13, 143-149.	0.5	Ο
370	Magnetic properties and photoluminescence of undoped and transition metal doped A1N nanorods. , 2008, , .		0
371	Random lasing from ZnO nanowires system. , 2009, , .		Ο
372	Ferromagnetic carbon-doped ZnO nanoneedles. , 2010, , .		0
373	Growth of high quality SnS van der Waals epitaxies on graphene buffer layer for photovoltaic applications. , 2012, , .		Ο
374	Application of a graphene buffer layer for the growth of high quality SnS films on GaAs(100) substrate. , 2012, , .		0
375	High quality SnS van der Waals epitaxies on graphene buffer layer. Proceedings of SPIE, 2012, , .	0.8	Ο
376	Growth of epitaxial quality SnS thin films on graphene. , 2012, , .		0
377	MBE growth of van der Waals epitaxy using graphene buffer layer. , 2013, , .		0
378	Local Atomic and Electronic Structure of the Fe dopants in AlN:Fe Nanorods. Journal of Physics: Conference Series, 2013, 430, 012112.	0.4	0

#	Article	IF	CITATIONS
379	Innenrücktitelbild: Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure (Angew. Chem. 40/2016). Angewandte Chemie, 2016, 128, 12731-12731.	2.0	0
380	(Invited) Solution Exfoilated Black Phosphorus and Its Applications. ECS Transactions, 2017, 77, 27-33.	0.5	0