## Thomas K Doktor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940712/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pseudoexon activation in disease by nonâ€splice site deep intronic sequence variation — wild type<br>pseudoexons constitute highâ€risk sites in the human genome. Human Mutation, 2022, 43, 103-127.                                                           | 1.1  | 17        |
| 2  | VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy.<br>Molecular Therapy - Nucleic Acids, 2022, 28, 58-76.                                                                                                     | 2.3  | 6         |
| 3  | Vulnerable exons, like <i>ACADM</i> exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers. Human Mutation, 2022, 43, 253-265.                                                                                 | 1.1  | 11        |
| 4  | Essential role of CK2α for the interaction and stability of replication fork factors during DNA<br>synthesis and activation of the S-phase checkpoint. Cellular and Molecular Life Sciences, 2022, 79, .                                                       | 2.4  | 2         |
| 5  | Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the<br>6-Pyruvoyl-Tetrahydropterin Synthase Gene. Nucleic Acid Therapeutics, 2022, 32, 378-390.                                                                           | 2.0  | 7         |
| 6  | Identification of SRSF10 as a regulator of <i>SMN2</i> ISSâ€№1. Human Mutation, 2021, 42, 246-260.                                                                                                                                                             | 1.1  | 15        |
| 7  | Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. Journal of<br>Experimental Medicine, 2020, 217, .                                                                                                                          | 4.2  | 189       |
| 8  | DeepCLIP: predicting the effect of mutations on protein–RNA binding with deep learning. Nucleic Acids<br>Research, 2020, 48, 7099-7118.                                                                                                                        | 6.5  | 54        |
| 9  | Down-regulation of CK2α correlates with decreased expression levels of DNA replication minichromosome maintenance protein complex (MCM) genes. Scientific Reports, 2019, 9, 14581.                                                                             | 1.6  | 5         |
| 10 | Next generation sequencing of RNA reveals novel targets of resveratrol with possible implications for Canavan disease. Molecular Genetics and Metabolism, 2019, 126, 64-76.                                                                                    | 0.5  | 16        |
| 11 | Blocking of an intronic splicing silencer completely rescues IKBKAP exon 20 splicing in familial dysautonomia patient cells. Nucleic Acids Research, 2018, 46, 7938-7952.                                                                                      | 6.5  | 15        |
| 12 | Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature, 2017, 541, 102-106.                                                                                                                                         | 13.7 | 152       |
| 13 | DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli. BMC<br>Microbiology, 2017, 17, 99.                                                                                                                           | 1.3  | 5         |
| 14 | RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Research, 2017, 45, 395-416.                                                                                        | 6.5  | 87        |
| 15 | Global identification of hnRNP A1 binding sites for SSO-based splicing modulation. BMC Biology, 2016, 14, 54.                                                                                                                                                  | 1.7  | 62        |
| 16 | The prevalent deep intronic c. 639 + 919 G > A GLA mutation causes pseudoexon activation and Fabry<br>disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer. Molecular<br>Genetics and Metabolism, 2016, 119, 258-269.           | 0.5  | 23        |
| 17 | Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells. Nucleic Acids Research, 2015, 43, 4627-4639. | 6.5  | 28        |
| 18 | Absence of an Intron Splicing Silencer in Porcine Smn1 Intron 7 Confers Immunity to the Exon Skipping<br>Mutation in Human SMN2. PLoS ONE, 2014, 9, e98841.                                                                                                    | 1,1  | 4         |

THOMAS K DOKTOR

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The <i>ETFDH</i> c.158A>G Variation Disrupts the Balanced Interplay of ESE- and ESS-Binding Proteins thereby Causing Missplicing and Multiple Acyl-CoA Dehydrogenation Deficiency. Human Mutation, 2014, 35, 86-95.                                                        | 1.1 | 32        |
| 20 | A synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation. Molecular Genetics and Metabolism, 2013, 110, 122-128.                                                                                                | 0.5 | 22        |
| 21 | CUCBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Scientific Reports, 2012, 2, 209.                                                                                                                                                               | 1.6 | 150       |
| 22 | SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the $3\hat{a}\in^2$ splice site. Human Mutation, 2011, 32, 220-230.                                                                                                              | 1.1 | 41        |
| 23 | The deep intronic c.903+469T>C mutation in the <i>MTRR</i> gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria. Human Mutation, 2010, 31, 437-444.                                   | 1.1 | 53        |
| 24 | The phenylalanine hydroxylase c.30C>G synonymous variation (p.G10G) creates a common exonic splicing silencer. Molecular Genetics and Metabolism, 2010, 100, 316-323.                                                                                                      | 0.5 | 23        |
| 25 | Seemingly Neutral Polymorphic Variants May Confer Immunity to Splicing-Inactivating Mutations: A<br>Synonymous SNP in Exon 5 of MCAD Protects from Deleterious Mutations in a Flanking Exonic<br>Splicing Enhancer, American Journal of Human Genetics, 2007, 80, 416-432, | 2.6 | 140       |