Mainak Ganguly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances, 2016, 6, 86174-86211.	3.6	201
2	Morphology Controlled Synthesis of SnS ₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light. Langmuir, 2014, 30, 4157-4164.	3.5	171
3	Fabrication of Porous β-Co(OH) ₂ Architecture at Room Temperature: A High Performance Supercapacitor. Langmuir, 2013, 29, 9179-9187.	3.5	147
4	Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation. ACS Applied Materials & Interfaces, 2014, 6, 22034-22043.	8.0	119
5	A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New Journal of Chemistry, 2014, 38, 2999.	2.8	91
6	A Complementary Palette of NanoCluster Beacons. ACS Nano, 2014, 8, 10150-10160.	14.6	81
7	Account of Nitroarene Reduction with Size- and Facet-Controlled CuO–MnO ₂ Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 9173-9184.	8.0	79
8	Surface Plasmon Effect of Cu and Presence of n–p Heterojunction in Oxide Nanocomposites for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2015, 119, 3780-3790.	3.1	75
9	A Segregated, Partially Oxidized, and Compact Ag ₁₀ Cluster within an Encapsulating DNA Host. Journal of the American Chemical Society, 2016, 138, 3469-3477.	13.7	70
10	Hierarchical Au–CuO nanocomposite from redox transformation reaction for surface enhanced Raman scattering and clock reaction. CrystEngComm, 2014, 16, 883-893.	2.6	65
11	One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta, 2016, 150, 253-264.	5.5	61
12	Synthesis of Highly Fluorescent Silver Clusters on Gold(I) Surface. Langmuir, 2013, 29, 2033-2043.	3.5	54
13	Ice Nucleation of Model Nanoplastics and Microplastics: A Novel Synthetic Protocol and the Influence of Particle Capping at Diverse Atmospheric Environments. ACS Earth and Space Chemistry, 2019, 3, 1729-1739.	2.7	53
14	Crystal-Plane-Dependent Etching of Cuprous Oxide Nanoparticles of Varied Shapes and Their Application in Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 24640-24653.	3.1	49
15	Robust cubooctahedron Zn3V2O8 in gram quantity: a material for photocatalytic dye degradation in water. CrystEngComm, 2013, 15, 6745.	2.6	49
16	Boron Precursor-Dependent Evolution of Differently Emitting Carbon Dots. Langmuir, 2017, 33, 573-584.	3.5	49
17	Synergism of gold and silver invites enhanced fluorescence for practical applications. RSC Advances, 2016, 6, 17683-17703.	3.6	47
18	Silver nanoparticle anchored carbon dots for improved sensing, catalytic and intriguing antimicrobial activity. Dalton Transactions, 2015, 44, 20692-20707	3.3	40

MAINAK GANGULY

#	Article	IF	CITATIONS
19	Fluorescent Au(<scp>i</scp>)@Ag ₂ /Ag ₃ giant cluster for selective sensing of mercury(<scp>ii</scp>) ion. Dalton Transactions, 2014, 43, 11557.	3.3	37
20	Ten-Atom Silver Cluster Signaling and Tempering DNA Hybridization. Analytical Chemistry, 2015, 87, 5302-5309.	6.5	37
21	Selective Dopamine Chemosensing Using Silver-Enhanced Fluorescence. Langmuir, 2014, 30, 4120-4128.	3.5	32
22	The tuning of metal enhanced fluorescence for sensing applications. Dalton Transactions, 2014, 43, 1032-1047.	3.3	31
23	Repeated and Folded DNA Sequences and Their Modular Ag ₁₀ ⁶⁺ Cluster. Journal of Physical Chemistry C, 2018, 122, 4670-4680.	3.1	31
24	Fabrication of a ZnO nanocolumnar thin film on a glass slide and its reversible switching from a superhydrophilic state. RSC Advances, 2013, 3, 5937.	3.6	30
25	DNA-Directed Fluorescence Switching of Silver Clusters. Journal of Physical Chemistry C, 2015, 119, 27829-27837.	3.1	30
26	Green Synthesis and Reversible Dispersion of a Giant Fluorescent Cluster in Solid and Liquid Phase. Langmuir, 2013, 29, 10945-10958.	3.5	29
27	Intriguing cysteine induced improvement of the emissive property of carbon dots with sensing applications. Physical Chemistry Chemical Physics, 2015, 17, 2394-2403.	2.8	29
28	A DNA-Encapsulated and Fluorescent Ag ₁₀ ⁶⁺ Cluster with a Distinct Metal-Like Core. Journal of Physical Chemistry C, 2017, 121, 14936-14945.	3.1	27
29	A DNA-Encapsulated Silver Cluster and the Roles of Its Nucleobase Ligands. Journal of Physical Chemistry C, 2018, 122, 28382-28392.	3.1	27
30	Carbon dot-MnO2 FRET system for fabrication of molecular logic gates. Sensors and Actuators B: Chemical, 2017, 246, 716-725.	7.8	26
31	Synthesis of multiwall carbon nanotube wrapped Co(OH)2 flakes: A high-performance supercapacitor. Applied Surface Science, 2015, 359, 500-507.	6.1	25
32	Intriguing Fluorescence Behavior of Diiminic Schiff Bases in the Presence of <i>in situ</i> Produced Noble Metal Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 22138-22147.	3.1	24
33	Pure inorganic gel: a new host with tremendous sorption capability. Chemical Communications, 2013, 49, 9428.	4.1	24
34	Green synthesis of highly fluorescent Au(<scp>i</scp>)@Ag ₂ /Ag ₃ -thiolate core–shell particles for selective detection of cysteine and Pb(<scp>ii</scp>). Physical Chemistry Chemical Physics, 2014, 16, 18185.	2.8	23
35	Photoproduced Fluorescent Au(I)@(Ag ₂ /Ag ₃)-Thiolate Giant Cluster: An Intriguing Sensing Platform for DMSO and Pb(II). Langmuir, 2014, 30, 348-357.	3.5	21
36	Purification of Gold Organosol by Solid Reagent. Journal of Physical Chemistry C, 2012, 116, 9265-9273.	3.1	20

MAINAK GANGULY

#	Article	lF	CITATIONS
37	Diiminic Schiff Bases: An Intriguing Class of Compounds for a Copperâ€Nanoparticleâ€Induced Fluorescence Study. Chemistry - A European Journal, 2012, 18, 15845-15855.	3.3	19
38	Novel Technology for the Removal of Brilliant Green from Water: Influence of Post-Oxidation, Environmental Conditions, and Capping. ACS Omega, 2019, 4, 12107-12120.	3.5	18
39	Orange-red silver emitters for sensing application and bio-imaging. Dalton Transactions, 2015, 44, 11457-11469.	3.3	17
40	lmine (–CHî€N–) brings selectivity for silver enhanced fluorescence. Dalton Transactions, 2015, 44, 4370-4379.	3.3	16
41	Fluorescence enhancement via varied long-chain thiol stabilized gold nanoparticles: A study of far-field effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 551-560.	3.9	16
42	Modified hydrothermal reaction (MHT) for CoV ₂ O ₆ ·4H ₂ O nanowire formation and the transformation to CoV ₂ O ₆ ·2H ₂ O single-crystals for antiferromagnetic ordering and spin-flop. RSC Advances, 2014, 4, 56977-56983.	3.6	15
43	Serendipitous Synthesis of Ag1.92Mo3O10·H2O Nanowires from AgNO3-Assisted Etching of Ammonium Phosphomolybdate: A Material with High Adsorption Capacity. Crystal Growth and Design, 2014, 14, 5034-5041.	3.0	15
44	Purely Inorganic Highly Efficient Ice Nucleating Particle. ACS Omega, 2018, 3, 3384-3395.	3.5	14
45	Intriguing Manipulation of Metalâ€Enhanced Fluorescence for the Detection of Cu ^{II} and Cysteine. Chemistry - A European Journal, 2014, 20, 12470-12476.	3.3	13
46	Fast, Cost-effective and Energy Efficient Mercury Removal-Recycling Technology. Scientific Reports, 2018, 8, 16255.	3.3	13
47	Precursor salt assisted syntheses of high-index faceted concave hexagon and nanorod-like polyoxometalates. Nanoscale, 2015, 7, 708-719.	5.6	12
48	Deposition of zinc oxide nanomaterial on different substrates for useful applications. CrystEngComm, 2014, 16, 4322.	2.6	11
49	Influence of Environmentally Relevant Physicochemical Conditions on a Highly Efficient Inorganic Ice Nucleating Particle. Journal of Physical Chemistry C, 2018, 122, 18690-18704.	3.1	9
50	Natural Kaolin: Sustainable Technology for the Instantaneous and Energyâ€Neutral Recycling of Anthropogenic Mercury Emissions. ChemSusChem, 2020, 13, 165-172.	6.8	8
51	Ligand chain length conveys thermochromism. Dalton Transactions, 2014, 43, 11624.	3.3	3
52	Aggregation of nitroaniline in tetrahydrofuran through intriguing H-bond formation by sodium borohydride. Physical Chemistry Chemical Physics, 2014, 16, 12865.	2.8	1