Oxana A Kholdeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerobic oxidation of syringyl alcohol over N-doped carbon nanotubes. Applied Catalysis A: General, 2022, 629, 118424.	4.3	6
2	Near-Infrared Photothermal Catalysis for Enhanced Conversion of Carbon Dioxide under Mild Conditions. ACS Applied Materials & Interfaces, 2022, 14, 5194-5202.	8.0	14
3	Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations. Catalysts, 2022, 12, 472.	3.5	5
4	Quantitative analysis of liquid-phase adsorption over chromium-containing metal–organic frameworks of MTN topology. Adsorption, 2021, 27, 953-962.	3.0	0
5	Heterolytic alkene oxidation with H ₂ O ₂ catalyzed by Nb-substituted Lindqvist tungstates immobilized on carbon nanotubes. Catalysis Science and Technology, 2021, 11, 3198-3207.	4.1	11
6	Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 2021, 11, 283.	3.5	34
7	Catalytic Performance of Zrâ€Based Metal–Organic Frameworks Zrâ€∎btc and MIPâ€200 in Selective Oxidations with H ₂ 0 ₂ . Chemistry - A European Journal, 2021, 27, 6985-6992.	3.3	20
8	Activation of H ₂ O ₂ over Zr(IV). Insights from Model Studies on Zr-Monosubstituted Lindqvist Tungstates. ACS Catalysis, 2021, 11, 10589-10603.	11.2	25
9	H2O2-based selective oxidations by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catalysis Today, 2020, 354, 196-203.	4.4	20
10	Nucleophilic versus Electrophilic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 10634-10649.	4.0	30
11	Heterogeneous epoxidation of menadione with hydrogen peroxide over the zeolite imidazolate framework ZIF-8. Dalton Transactions, 2020, 49, 12546-12549.	3.3	7
12	Protons Make Possible Heterolytic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 9699-9704.	11.2	41
13	Why Does Nb(V) Show Higher Heterolytic Pathway Selectivity Than Ti(IV) in Epoxidation with H ₂ O ₂ ? Answers from Model Studies on Nb- and Ti-Substituted Lindqvist Tungstates. ACS Catalysis, 2019, 9, 6262-6275.	11.2	36
14	Cyclohexene Oxidation with H2O2 over Metal-Organic Framework MIL-125(Ti): The Effect of Protons on Reactivity. Catalysts, 2019, 9, 324.	3.5	15
15	Guests Like Gear Levers: Donor Binding to Coordinatively Unsaturated Metal Sites in MILâ€101 Controls the Linker′s Rotation. Chemistry - A European Journal, 2019, 25, 5163-5168.	3.3	8
16	Carbon Nanotubes Modified by Venturello Complex as Highly Efficient Catalysts for Alkene and Thioethers Oxidation With Hydrogen Peroxide. Frontiers in Chemistry, 2019, 7, 858.	3.6	16
17	Propylene glycol oxidation with hydrogen peroxide over Zr-containing metal-organic framework UiO-66. Catalysis Today, 2019, 333, 47-53.	4.4	25
18	Thioether Oxidation with H ₂ O ₂ Catalyzed by Nb‣ubstituted Polyoxotungstates: Mechanistic Insights. European Journal of Inorganic Chemistry, 2019, 2019, 410-416.	2.0	13

Oxana A Kholdeeva

#	Article	IF	CITATIONS
19	H2O2-based selective epoxidations: Nb-silicates versus Ti-silicates. Catalysis Today, 2019, 333, 63-70.	4.4	23
20	Recent Progress in Selective Oxidations with Hydrogen Peroxide Catalyzed by Polyoxometalates. Green Chemistry and Sustainable Technology, 2019, , 61-91.	0.7	4
21	Highly Efficient Catalysts Based on Divanadium-Substituted Polyoxometalate and N-Doped Carbon Nanotubes for Selective Oxidation of Alkylphenols. ACS Catalysis, 2018, 8, 1297-1307.	11.2	72
22	Titanium-silica catalyst derived from defined metallic titanium cluster precursor: Synthesis and catalytic properties in selective oxidations. Inorganica Chimica Acta, 2018, 470, 393-401.	2.4	11
23	Relevance of Protons in Heterolytic Activation of H ₂ O ₂ over Nb(V): Insights from Model Studies on Nb-Substituted Polyoxometalates. ACS Catalysis, 2018, 8, 9722-9737.	11.2	52
24	Tungsten-Based Mesoporous Silicates W-MMM-E as Heterogeneous Catalysts for Liquid-Phase Oxidations with Aqueous H2O2. Catalysts, 2018, 8, 95.	3.5	9
25	Synthesis of coenzyme Q ₀ through divanadium-catalyzed oxidation of 3,4,5-trimethoxytoluene with hydrogen peroxide. Dalton Transactions, 2017, 46, 5202-5209.	3.3	16
26	Toward understanding the unusual reactivity of mesoporous niobium silicates in epoxidation of C C bonds with hydrogen peroxide. Journal of Catalysis, 2017, 356, 85-99.	6.2	50
27	Understanding the Regioselectivity of Aromatic Hydroxylation over Divanadium-Substituted γ-Keggin Polyoxotungstate. ACS Catalysis, 2017, 7, 8514-8523.	11.2	23
28	Alkene Epoxidation Catalyzed by Ti-Containing Polyoxometalates: Unprecedented β-Oxygen Transfer Mechanism. Inorganic Chemistry, 2016, 55, 6080-6084.	4.0	40
29	Propylene glycol oxidation with tert -butyl hydroperoxide over Cr-containing metal-organic frameworks MIL-101 and MIL-100. Catalysis Today, 2016, 278, 97-103.	4.4	31
30	Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catalysis Today, 2016, 278, 22-29.	4.4	48
31	One-step solvent-free synthesis of cyclic carbonates by oxidative carboxylation of styrenes over a recyclable Ti-containing catalyst. Applied Catalysis B: Environmental, 2016, 181, 363-370.	20.2	49
32	Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coordination Chemistry Reviews, 2016, 306, 302-330.	18.8	57
33	Mechanism of Thioether Oxidation over Di―and Tetrameric Ti Centres: Kinetic and DFT Studies Based on Model Tiâ€Containing Polyoxometalates. Chemistry - A European Journal, 2015, 21, 14496-14506.	3.3	27
34	Selective oxidation of pseudocumene and 2-methylnaphthalene withÂaqueous hydrogen peroxide catalyzed by γ-Keggin divanadium-substituted polyoxotungstate. Journal of Organometallic Chemistry, 2015, 793, 210-216.	1.8	19
35	Mesoporous niobium-silicates prepared by evaporation-induced self-assembly as catalysts for selective oxidations with aqueous H2O2. Journal of Catalysis, 2015, 332, 138-148.	6.2	43
36	Environmentally Benign Oxidation of Alkylphenols to p-Benzoquinones: A Comparative Study of Various Ti-Containing Catalysts. Topics in Catalysis, 2014, 57, 1377-1384.	2.8	11

#	Article	IF	CITATIONS
37	Highly Selective H ₂ O ₂ â€Based Oxidation of Alkylphenols to <i>p</i> â€Benzoquinones Over MILâ€125 Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2014, 2014, 132-139.	2.0	50
38	Recent developments in liquid-phase selective oxidation using environmentally benign oxidants and mesoporous metal silicates. Catalysis Science and Technology, 2014, 4, 1869-1889.	4.1	80
39	User-friendly synthesis of highly selective and recyclable mesoporous titanium-silicate catalysts for the clean production of substituted p-benzoquinones. Catalysis Science and Technology, 2014, 4, 200-207.	4.1	41
40	Highly Selective Oxidation of Alkylphenols to <i>p</i> -Benzoquinones with Aqueous Hydrogen Peroxide Catalyzed by Divanadium-Substituted Polyoxotungstates. ACS Catalysis, 2014, 4, 2706-2713.	11.2	57
41	Hydrocarbon oxidation over Fe- and Cr-containing metal-organic frameworks MIL-100 and MIL-101–a comparative study. Catalysis Today, 2014, 238, 54-61.	4.4	103
42	Allylic oxdation of alkenes with molecular oxygen catalyzed by porous coordination polymers Fe-MIL-101 and Cr-MIL-101. Kinetics and Catalysis, 2013, 54, 607-614.	1.0	18
43	Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 2013, 298, 179-185.	6.2	267
44	Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. Journal of Catalysis, 2013, 298, 61-69.	6.2	202
45	Liquid Phase Oxidation of Organic Compounds by Metal-Organic Frameworks. , 2013, , 371-409.		8
46	Hydrogen Peroxide Activation over Ti ^{IV} : What Have We Learned from Studies on Tiâ€Containing Polyoxometalates?. European Journal of Inorganic Chemistry, 2013, 2013, 1595-1605.	2.0	50
47	Efficient epoxidation of olefins by H2O2 catalyzed by iron "helmet―phthalocyanines. Chemical Communications, 2013, 49, 5577.	4.1	35
48	Alkene oxidation by Ti-containing polyoxometalates. Unambiguous characterization of the role of the protonation state. Chemical Communications, 2012, 48, 9266.	4.1	48
49	Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2017-2034.	2.1	91
50	Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 2012, 48, 6812.	4.1	175
51	Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101: synthesis, characterization and catalytic properties. Dalton Transactions, 2011, 40, 1441.	3.3	82
52	MILâ€101 Supported Polyoxometalates: Synthesis, Characterization, and Catalytic Applications in Selective Liquidâ€Phase Oxidation. Israel Journal of Chemistry, 2011, 51, 281-289.	2.3	71
53	Mechanistic Insights into Oxidation of 2-Methyl-1-naphthol with Dioxygen: Autoxidation or a Spin-Forbidden Reaction?. Journal of Physical Chemistry B, 2011, 115, 11971-11983.	2.6	16
54	Epoxidation of Alkenes with H ₂ O ₂ Catalyzed by Dititaniumâ€Containing 19â€Tungstodiarsenate(III): Experimental and Theoretical Studies. European Journal of Inorganic Chemistry, 2010, 2010, 5312-5317.	2.0	42

Oxana A Kholdeeva

#	Article	IF	CITATIONS
55	Heterogeneous Selective Oxidation of Alkenes to α,β―Unsaturated Ketones over Coordination Polymer MILâ€∎01. Advanced Synthesis and Catalysis, 2010, 352, 2943-2948.	4.3	84
56	Hexazirconium―and Hexahafnium ontaining Tungstoarsenates(III) and Their Oxidation Catalysis Properties. Chemistry - A European Journal, 2010, 16, 11797-11800.	3.3	56
57	Catalytic properties of the polyoxometalate [Ti2(OH)2As2W19O67(H2O)]8â^' in selective oxidations with hydrogen peroxide. Kinetics and Catalysis, 2010, 51, 816-822.	1.0	5
58	Mechanistic Insights into Alkene Epoxidation with H ₂ O ₂ by Ti- and other TM-Containing Polyoxometalates: Role of the Metal Nature and Coordination Environment. Journal of the American Chemical Society, 2010, 132, 7488-7497.	13.7	148
59	Hybrid Polyoxotungstate/MIL-101 Materials: Synthesis, Characterization, and Catalysis of H ₂ O ₂ -Based Alkene Epoxidation. Inorganic Chemistry, 2010, 49, 2920-2930.	4.0	228
60	Clean catalytic oxidation of 8-hydroxyquinoline to quinoline-5,8-dione with tBuOOH in the presence of covalently bound FePcS–SiO2 catalysts. Green Chemistry, 2010, 12, 1076.	9.0	14
61	Unique Catalytic Performance of the Polyoxometalate [Ti ₂ (OH) ₂ As ₂ W ₁₉ O ₆₇ (H ₂ O)] <su The Role of 5â€Coordinated Titanium in H₂O₂ Activation. European Journal of Inorganic Chemistry, 2009, 2009, 5134-5141</su 	ıp>8– <br 2.0	sup>: 47
62	Catalytic Properties and Stability of the Heteropolytungstate [P ₂ W ₂₁ O ₇₁ (H ₂ O) ₃] ^{6–} in H ₂ O ₂ â€Based Oxidations. European Journal of Inorganic Chemistry, 2009, 2009, 5142-5147.	2.0	18
63	Titanium-Doped Solid Core-Mesoporous Shell Silica Particles: Synthesis and Catalytic Properties in Selective Oxidation Reactions. Catalysis Letters, 2009, 127, 75-82.	2.6	15
64	Catalytic properties of the macromolecular polyoxomolybdate cluster in selective oxidation of sulfides. Russian Chemical Bulletin, 2009, 58, 134-137.	1.5	35
65	Oxidation of alkanes and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Applied Catalysis A: General, 2009, 365, 96-104.	4.3	42
66	How to reach 100% selectivity in H2O2-based oxidation of 2,3,6-trimethylphenol to trimethyl-p-benzoquinone over Ti,Si-catalysts. Catalysis Today, 2009, 141, 330-336.	4.4	44
67	Kinetics and mechanism of the oxidation of alkyl substituted phenols and naphthols with tBuOOH in the presence of supported iron phthalocyanine. New Journal of Chemistry, 2009, 33, 1031.	2.8	46
68	Highly efficient production of 2,3,5-trimethyl-1,4-benzoquinone using aqueous H2O2 and grafted Ti(iv)/SiO2 catalyst. Green Chemistry, 2007, 9, 731.	9.0	48
69	Dititanium-Containing 19-Tungstodiarsenate(III) [Ti2(OH)2As2W19O67(H2O)]8â^': Synthesis, Structure, Electrochemistry, and Oxidation Catalysis. Chemistry - A European Journal, 2007, 13, 4733-4742.	3.3	73
70	Preparation of 2-methyl-1,4-naphthoquinone (vitamin K3) by catalytic oxidation of 2-methyl-1-naphthol in the presence of iron phthalocyanine supported catalyst. Comptes Rendus Chimie, 2007, 10, 598-603.	0.5	40
71	Titanium- and zirconium-monosubstituted polyoxometalates as molecular models for studying mechanisms of oxidation catalysis. Journal of Molecular Catalysis A, 2007, 262, 7-24.	4.8	101
72	EPR study on the mechanism of H2O2-based oxidation of alkylphenols over titanium single-site catalysts. Journal of Molecular Catalysis A, 2007, 277, 185-192.	4.8	37

#	Article	IF	CITATIONS
73	Full phenol peroxide oxidation over Fe-MMM-2 catalysts with enhanced hydrothermal stability. Applied Catalysis B: Environmental, 2007, 75, 290-297.	20.2	31
74	New routes to Vitamin K3. Catalysis Today, 2007, 121, 58-64.	4.4	62
75	ZrIV-Monosubstituted Keggin-Type Dimeric Polyoxometalates:  Synthesis, Characterization, Catalysis of H2O2-Based Oxidations, and Theoretical Study. Inorganic Chemistry, 2006, 45, 7224-7234.	4.0	113
76	H2O2-Based oxidation of functionalized phenols containing several oxidizable sites to p-quinones using a mesoporous titanium-silicate catalyst. Green Chemistry, 2006, 8, 883.	9.0	21
77	Titanium-monosubstituted polyoxometalates: relation between homogeneous and heterogeneous Ti-single-site-based catalysis. Topics in Catalysis, 2006, 40, 229-243.	2.8	71
78	The role of protons in cyclohexene oxidation with H2O2 catalysed by Ti(IV)-monosubstituted Keggin polyoxometalate. Journal of Molecular Catalysis A, 2005, 232, 173-178.	4.8	75
79	FTIR Spectroscopic Study of Titanium-Containing Mesoporous Silicate Materials. Langmuir, 2005, 21, 10545-10554.	3.5	38
80	Aerobic Oxidation of Formaldehyde Mediated by a Ce-Containing Polyoxometalate under Mild Conditions. Inorganic Chemistry, 2005, 44, 666-672.	4.0	68
81	Synthesis, Characterization, and Reactivity of Ti(IV)-Monosubstituted Keggin Polyoxometalates. Inorganic Chemistry, 2005, 44, 1635-1642.	4.0	79
82	A new mesoporous titanium-silicate Ti-MMM-2: a highly active and hydrothermally stable catalyst for H2O2-based selective oxidations. Catalysis Today, 2004, 91-92, 205-209.	4.4	69
83	First Isolated Active Titanium Peroxo Complex:Â Characterization and Theoretical Study. Inorganic Chemistry, 2004, 43, 2284-2292.	4.0	77
84	Novel optically active pyrazole ligands derived from (+)-3-carene. Tetrahedron: Asymmetry, 2001, 12, 2875-2881.	1.8	7
85	Kinetics and mechanism of thioether oxidation with H2O2 in the presence of Ti(IV)-substituted heteropolytungstates. Journal of Molecular Catalysis A, 2000, 158, 223-229.	4.8	34
86	Alkene and thioether oxidations with H2O2 over Ti-containing mesoporous mesophase catalysts. Journal of Molecular Catalysis A, 2000, 158, 417-421.	4.8	37
87	A Dimeric Titanium-Containing Polyoxometalate. Synthesis, Characterization, and Catalysis of H2O2-Based Thioether Oxidation. Inorganic Chemistry, 2000, 39, 3828-3837.	4.0	149
88	Environmentally Benign Oxidants. , 0, , 1-20.		15
89	Industrial Applications. , 0, , 451-506.		16