Claudia Sagheddu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules, 2022, 12, 881.	1.8	14
2	Mesolimbic dopamine dysregulation as a signature of information processing deficits imposed by prenatal THC exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110128.	2.5	20
3	Prenatal THC Does Not Affect Female Mesolimbic Dopaminergic System in Preadolescent Rats. International Journal of Molecular Sciences, 2021, 22, 1666.	1.8	17
4	Repeated exposure to JWHâ€018 induces adaptive changes in the mesolimbic and mesocortical dopaminergic pathways, glial cells alterations, and behavioural correlates. British Journal of Pharmacology, 2021, 178, 3476-3497.	2.7	12
5	Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Molecular Psychiatry, 2021, 26, 7076-7090.	4.1	19
6	N-Acylethanolamine Acid Amidase Inhibition Potentiates Morphine Analgesia and Delays the Development of Tolerance. Neurotherapeutics, 2021, 18, 2722-2736.	2.1	7
7	Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals, 2021, 14, 1025.	1.7	13
8	Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex. Frontiers in Pharmacology, 2020, 11, 588160.	1.6	17
9	Neurophysiological and Neurochemical Effects of the Putative Cognitive Enhancer (S)-CE-123 on Mesocorticolimbic Dopamine System. Biomolecules, 2020, 10, 779.	1.8	15
10	Endocannabinoid-Like Lipid Neuromodulators in the Regulation of Dopamine Signaling: Relevance for Drug Addiction. Frontiers in Synaptic Neuroscience, 2020, 12, 588660.	1.3	10
11	Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nature Neuroscience, 2019, 22, 1975-1985.	7.1	93
12	Astrocytic Mechanisms Involving Kynurenic Acid Control Δ9-Tetrahydrocannabinol-Induced Increases in Glutamate Release in Brain Reward-Processing Areas. Molecular Neurobiology, 2019, 56, 3563-3575.	1.9	20
13	Inhibition of N-acylethanolamine acid amidase reduces nicotine-induced dopamine activation and reward. Neuropharmacology, 2019, 144, 327-336.	2.0	24
14	Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia, 2017, 58, 1762-1770.	2.6	32
15	Endocannabinoid Signaling in Motivation, Reward, and Addiction. International Review of Neurobiology, 2015, 125, 257-302.	0.9	38
16	Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology, 2015, 97, 383-393.	2.0	68
17	Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nature Neuroscience, 2015, 18, 75-86.	7.1	205
18	Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiology of Disease, 2015, 73, 60-69.	2.1	150

CLAUDIA SAGHEDDU

#	Article	IF	CITATIONS
19	Individual Differences and Vulnerability to Drug Addiction: A Focus on the Endocannabinoid System. CNS and Neurological Disorders - Drug Targets, 2015, 14, 502-517.	0.8	12
20	Enhanced Endocannabinoid-Mediated Modulation of Rostromedial Tegmental Nucleus Drive onto Dopamine Neurons in Sardinian Alcohol-Preferring Rats. Journal of Neuroscience, 2014, 34, 12716-12724.	1.7	47
21	Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons. Journal of General Physiology, 2012, 140, 3-15.	0.9	50
22	Flash Photolysis of Caged Compounds in the Cilia of Olfactory Sensory Neurons. Journal of Visualized Experiments, 2011, , e3195.	0.2	6
23	Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells. Journal of Physiology, 2010, 588, 4189-4204.	1.3	61
24	Calciumâ€activated chloride currents in olfactory sensory neurons from mice lacking bestrophinâ€2. Journal of Physiology, 2009, 587, 4265-4279.	1.3	44