
Joachim Roth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroinflammation in Primary Cultures of the Rat Spinal Dorsal Horn Is Attenuated in the Presence of Adipose Tissue–Derived Medicinal Signalling Cells (AdMSCs) in a Co-cultivation Model. Molecular Neurobiology, 2022, 59, 475-494.	4.0	4
2	SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. Journal of Inflammation Research, 2022, Volume 15, 509-531.	3.5	1
3	Sensitization of primary cultures from rat dorsal root ganglia with lipopolysaccharide (LPS) requires a robust inflammatory response. Inflammation Research, 2022, 71, 187-190.	4.0	2
4	Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain, Behavior, and Immunity, 2021, 92, 90-101.	4.1	6
5	Manifestation of lipopolysaccharide-induced tolerance in neuro-glial primary cultures of the rat afferent somatosensory system. Inflammation Research, 2021, 70, 429-444.	4.0	8
6	LPS Primes Brain Responsiveness to High Mobility Group Box-1 Protein. Pharmaceuticals, 2021, 14, 558.	3.8	12
7	Microbubble-mediated sonothrombolysis with BR38 of a venous full blood thrombus in a rat embolic stroke model. Annals of Translational Medicine, 2021, 9, 1061-1061.	1.7	2
8	Primary culture of the rat spinal dorsal horn: a tool to investigate the effects of inflammatory stimulation on the afferent somatosensory system. Pflugers Archiv European Journal of Physiology, 2020, 472, 1769-1782.	2.8	5
9	Age-Dependent Changes of Adipokine and Cytokine Secretion From Rat Adipose Tissue by Endogenous and Exogenous Toll-Like Receptor Agonists. Frontiers in Immunology, 2020, 11, 1800.	4.8	14
10	Neurons and astrocytes of the chicken hypothalamus directly respond to lipopolysaccharide and chicken interleukin-6. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 75-85.	1.5	9
11	Effects of gabapentinoids on responses of primary cultures from rat dorsal root ganglia to inflammatory or somatosensory stimuli. Journal of Basic and Clinical Physiology and Pharmacology, 2020, 31, .	1.3	10
12	Association of bovine uterine involution disturbances with serum neuropeptide concentrations. Veterinary World, 2020, 13, 1854-1857.	1.7	1
13	Eating too much fat inflames the brain: This may make you hot and anxious. Brain, Behavior, and Immunity, 2019, 81, 14-15.	4.1	1
14	Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chemical Neuroscience, 2019, 10, 4394-4406.	3.5	8
15	Cytoglobin Attenuates Neuroinflammation in Lipopolysaccharide-Activated Primary Preoptic Area Cells via NF-κB Pathway Inhibition. Frontiers in Molecular Neuroscience, 2019, 12, 307.	2.9	6
16	Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death and Differentiation, 2018, 25, 1394-1407.	11.2	28
17	Inflammatory cytokine and Câ€reactive protein concentrations in dogs with systemic inflammatory response syndrome. Journal of Veterinary Emergency and Critical Care, 2018, 28, 9-19.	1.1	27
18	Serum Levels of Neuropeptides in Cows with Left Abomasal Displacement. Veterinary Sciences, 2018, 5, 103.	1.7	0

#	Article	IF	CITATIONS
19	Effects of thermal stimulation on neurons and astrocytes cultured from the rat median preoptic nucleus. NeuroReport, 2018, 29, 1468-1472.	1.2	8
20	Primary Cultures from Rat Dorsal Root Ganglia: Responses of Neurons and Glial Cells to Somatosensory or Inflammatory Stimulation. Neuroscience, 2018, 394, 1-13.	2.3	23
21	Age Dependent Hypothalamic and Pituitary Responses to Novel Environment Stress or Lipopolysaccharide in Rats. Frontiers in Behavioral Neuroscience, 2018, 12, 55.	2.0	12
22	Serum neuropeptide concentrations in cows with intrapartum uterine torsion. Animal Reproduction Science, 2018, 196, 193-196.	1.5	8
23	The relevance of kalikrein-kinin system via activation of B 2 receptor in LPS-induced fever in rats. Neuropharmacology, 2017, 126, 84-96.	4.1	10
24	The use of siRNA as a pharmacological tool to assess a role for the transcription factor NF-IL6 in the brain under <i>in vitro</i> and <i>in vivo</i> conditions during LPS-induced inflammatory stimulation. Journal of Basic and Clinical Physiology and Pharmacology, 2017, 28, 563-571.	1.3	5
25	Inflammation, fever, and body temperature under febrile conditions. Journal of Basic and Clinical Physiology and Pharmacology, 2017, 28, 519-520.	1.3	3
26	Fever: Mediators and Mechanisms. , 2017, , 861-890.		0
27	Circulating and broncho-alveolar interleukin-6 in relation to body temperature in an experimental model of bovine Chlamydia psittaci infection. PLoS ONE, 2017, 12, e0189321.	2.5	4
28	Increased CSF aquaporin-4, and interleukin-6 levels in dogs with idiopathic communicating internal hydrocephalus and a decrease after ventriculo-peritoneal shunting. Fluids and Barriers of the CNS, 2016, 13, 12.	5.0	16
29	Modulatory effects of vagal stimulation on neurophysiological parameters and the cellular immune response in the rat brain during systemic inflammation. Intensive Care Medicine Experimental, 2016, 4, 19.	1.9	32
30	Effects of prostaglandin E2 on cells cultured from the rat organum vasculosum laminae terminalis and median preoptic nucleus. Neuroscience, 2016, 313, 23-35.	2.3	27
31	A paradoxical role for alarin in the nervous control of energy homeostasis and thermoregulation: orexigenic but hypermetabolic. Temperature, 2015, 2, 49-50.	3.0	2
32	Fever and sickness behavior: Friend or foe?. Brain, Behavior, and Immunity, 2015, 50, 322-333.	4.1	110
33	Prostaglandin D2 modulates calcium signals induced by prostaglandin E2 in neurons of rat dorsal root ganglia. Neuroscience Letters, 2015, 597, 159-163.	2.1	13
34	Who is the gatekeeper to let inflammation enter the brain? A concerted action of endothelial and perivascular cells. Brain, Behavior, and Immunity, 2015, 48, 29-30.	4.1	1
35	The transcription factor nuclear factor interleukin 6 mediates pro- and anti-inflammatory responses during LPS-induced systemic inflammation in mice. Brain, Behavior, and Immunity, 2015, 48, 147-164.	4.1	44
36	Intraperitoneal and subcutaneous injections of the TLR9 agonist ODN 1668 in rats: Brain inflammatory responses are related to peripheral IL-6 rather than interferons. Journal of Neuroimmunology, 2014, 277, 105-117.	2.3	9

#	Article	IF	CITATIONS
37	Leptin is involved in age-dependent changes in response to systemic inflammation in the rat. Brain, Behavior, and Immunity, 2014, 36, 128-138.	4.1	35
38	Mechanisms of Fever Production and Lysis: Lessons from Experimental LPS Fever. , 2014, 4, 1563-1604.		137
39	Critical role for peripherally-derived interleukin-10 in mediating the thermoregulatory manifestations of fever and hypothermia in severe forms of lipopolysaccharide-induced inflammation. Pflugers Archiv European Journal of Physiology, 2014, 466, 1451-1466.	2.8	31
40	Interleukin-10 modulates the synthesis of inflammatory mediators in the sensory circumventricular organs: implications for the regulation of fever and sickness behaviors. Journal of Neuroinflammation, 2013, 10, 22.	7.2	16
41	The putative JAK-STAT inhibitor AG490 exacerbates LPS-fever, reduces sickness behavior, and alters the expression of pro- and anti-inflammatory genes in the rat brain. Neuropharmacology, 2013, 71, 98-111.	4.1	40
42	Activation of the inflammatory transcription factor nuclear factor interleukin-6 during inflammatory and psychological stress in the brain. Journal of Neuroinflammation, 2013, 10, 140.	7.2	33
43	Antipyretic effect of central [Pyr1]apelin13 on LPS-induced fever in the rat. Regulatory Peptides, 2013, 184, 6-13.	1.9	7
44	Chemokine ligand (CCL)-3 promotes an integrated febrile response when injected within pre-optic area (POA) of rats and induces calcium signaling in cells of POA microcultures but not TNF-α or IL-6 synthesis. Brain, Behavior, and Immunity, 2013, 34, 120-129.	4.1	11
45	Fever induction by systemic stimulation with macrophage-activating lipopeptide-2 depends upon TLR2 but not CD36. Innate Immunity, 2012, 18, 541-559.	2.4	18
46	The viral mimetic polyinosinic:polycytidylic acid (poly I:C) induces cellular responses in primary cultures from rat brain sites with an incomplete blood–brain barrier. Neuroscience Letters, 2012, 530, 64-68.	2.1	19
47	Fever, sickness behavior, and expression of inflammatory genes in the hypothalamus after systemic and localized subcutaneous stimulation of rats with the toll-like receptor 7 agonist imiquimod. Neuroscience, 2012, 201, 166-183.	2.3	50
48	Parthenolide attenuates LPS-induced fever, circulating cytokines and markers of brain inflammation in rats. Cytokine, 2011, 56, 739-748.	3.2	52
49	Differences in the relative involvement of peripherally released interleukin (IL)-6, brain IL-1β and prostanoids in mediating lipopolysaccharide-induced fever and sickness behavior. Psychoneuroendocrinology, 2011, 36, 608-622.	2.7	55
50	Spatiotemporal nuclear factor interleukinâ€6 expression in the rat brain during lipopolysaccharideâ€induced fever is linked to sustained hypothalamic inflammatory target gene induction. Journal of Comparative Neurology, 2011, 519, 480-505.	1.6	50
51	Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines. Brain Research, 2010, 1363, 93-106.	2.2	58
52	Peripheral and central cyclooxygenase (COX) products may contribute to the manifestation of brain-controlled sickness responses during localized inflammation induced by macrophage-activating lipopeptide-2 (MALP-2). Neuroscience Letters, 2010, 479, 107-111.	2.1	14
53	Tumor necrosis factor-α, interleukin-1β and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema. Journal of Neuroimmunology, 2009, 206, 44-51.	2.3	34
54	CCL3/MIP-11̂± is not involved in the LPS-induced fever and its pyrogenic activity depends on CRF. Brain Research, 2009, 1269, 54-60.	2.2	20

#	Article	IF	CITATIONS
55	Molecular Aspects of Fever and Hyperthermia. Immunology and Allergy Clinics of North America, 2009, 29, 229-245.	1.9	33
56	Macrophage-activating lipopeptide-2 (MALP-2) induces a localized inflammatory response in rats resulting in activation of brain sites implicated in fever. Brain Research, 2008, 1205, 36-46.	2.2	20
57	Rat area postrema microglial cells act as sensors for the toll-like receptor-4 agonist lipopolysaccharide. Journal of Neuroimmunology, 2008, 204, 66-74.	2.3	51
58	Characterization of the febrile response induced by fibroblast-stimulating lipopeptide-1 in guinea pigs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R152-R161.	1.8	17
59	Nuclear translocation of the transcription factor STAT5 in the rat brain after systemic leptin administration. Neuroscience Letters, 2007, 417, 286-291.	2.1	62
60	STAT3 and COX-2 activation in the guinea-pig brain during fever induced by the Toll-like receptor-3 agonist polyinosinic:polycytidylic acid. Cell and Tissue Research, 2007, 328, 549-561.	2.9	27
61	Molecular Aspects of Fever and Hyperthermia. Neurologic Clinics, 2006, 24, 421-439.	1.8	58
62	Endogenous antipyretics. Clinica Chimica Acta, 2006, 371, 13-24.	1.1	53
63	Immunohistochemical evidence of functional leptin receptor expression in neuronal and endothelial cells of the rat brain. Neuroscience Letters, 2006, 394, 105-110.	2.1	44
64	Pyrexia, anorexia, adipsia, and depressed motor activity in rats during systemic inflammation induced by the Toll-like receptors-2 and -6 agonists MALP-2 and FSL-1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R180-R187.	1.8	43
65	Nuclear STAT3 translocation in guinea pig and rat brain endothelium during systemic challenge with lipopolysaccharide and interleukin-6. Journal of Comparative Neurology, 2005, 491, 1-14.	1.6	66
66	Localized vs. systemic inflammation in guinea pigs: a role for prostaglandins at distinct points of the fever induction pathways?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R340-R347.	1.8	31
67	Endogenous antipyretics: neuropeptides and glucocorticoids. Frontiers in Bioscience - Landmark, 2004, 9, 816.	3.0	48
68	Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Frontiers in Bioscience - Landmark, 2004, 9, 290.	3.0	147
69	Body temperature, behavior, and plasma cortisol changes induced by chronic infusion of Staphylococcus aureus in goats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R863-R869.	1.8	14
70	Nuclear translocation of the transcription factor STAT3 in the guinea pig brain during systemic or localized inflammation. Journal of Physiology, 2004, 557, 671-687.	2.9	58
71	Is interleukin-6 the necessary pyrogenic cytokine?. Journal of Thermal Biology, 2004, 29, 383-389.	2.5	19
72	Interleukin-6 mediates lipopolysaccharide-induced nuclear STAT3 translocation in astrocytes of rat sensory circumventricular organs. Brain Research, 2003, 980, 151-155.	2.2	37

#	Article	IF	CITATIONS
73	Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. European Journal of Neuroscience, 2003, 18, 1848-1860.	2.6	76
74	Fever induction by localized subcutaneous inflammation in guinea pigs: the role of cytokines and prostaglandins. Journal of Applied Physiology, 2003, 94, 1395-1402.	2.5	34
75	Selected Contribution: Role of IL-6 in LPS-induced nuclear STAT3 translocation in sensory circumventricular organs during fever in rats. Journal of Applied Physiology, 2002, 92, 2657-2666.	2.5	77
76	Influence of systemic treatment with cyclooxygenase inhibitors on lipopolysaccharide-induced fever and circulating levels of cytokines and cortisol in guinea-pigs. Pflugers Archiv European Journal of Physiology, 2002, 443, 411-417.	2.8	44
77	Leptin-Induced Nuclear Translocation of STAT3 Immunoreactivity in Hypothalamic Nuclei Involved in Body Weight Regulation. Journal of Neuroscience, 2001, 21, 2413-2424.	3.6	186
78	The central pyrogenic action of interleukin-6 is related to nuclear translocation of STAT3 in the anteroventral preoptic area of the rat brain. Journal of Thermal Biology, 2001, 26, 299-305.	2.5	11
79	Febrile and cortisol responses induced in guinea pigs by localized peripheral inflammatory stimulation. Journal of Thermal Biology, 2001, 26, 319-324.	2.5	2
80	The Role of Local Induction of Tumor Necrosis Factor by LPS within a Subcutaneous Air Pouch in the Development of a Febrile Response in Guinea Pigs. NeuroImmunoModulation, 2000, 7, 169-176.	1.8	11
81	The role of tumor necrosis factor (TNF) in the febrile and metabolic responses of rats to intraperitoneal injection of a high dose of lipopolysaccharide. Pflugers Archiv European Journal of Physiology, 2000, 440, 925-932.	2.8	90
82	Afferent nerves are involved in the febrile response to injection of LPS into artificial subcutaneous chambers in guinea pigs. Physiology and Behavior, 2000, 71, 305-313.	2.1	42
83	Neutralization of pyrogen-induced tumour necrosis factor by its type 1 soluble receptor in guinea-pigs: effects on fever and interleukin-6 release. Journal of Physiology, 1998, 509, 267-275.	2.9	67
84	Tolerance to Pyrogens. Annals of the New York Academy of Sciences, 1998, 856, 116-131.	3.8	74
85	Inhibition of nitric oxide synthase results in a suppression of interleukin-1β-induced fever in rats. Life Sciences, 1998, 62, PL345-PL350.	4.3	36
86	Changes of abdominal temperature and circulating levels of cortisol and interleukin-6 in response to intra-arterial infusions of tumor necrosis factor-α or tumor necrosis factor-β in guinea pigs. European Journal of Pharmacology, 1997, 334, 249-254.	3.5	10
87	Lack of cross tolerance between LPS and muramyl dipeptide in induction of circulating TNF-α and IL-6 in guinea pigs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1529-R1533.	1.8	30
88	Fever and production of cytokines in response to repeated injections of muramyl dipeptide in guinea-pigs. Pflugers Archiv European Journal of Physiology, 1997, 434, 525-533.	2.8	28
89	Thermoregulatory vasomotor reactions during endotoxin fever in guinea pigs. Journal of Thermal Biology, 1995, 20, 431-436.	2.5	4
90	Production of Systemic and Hypothalamic Cytokines during the Early Phase of Endotoxin Fever. Neuroendocrinology, 1995, 62, 55-61.	2.5	112

#	Article	IF	CITATIONS
91	Alteration of Endotoxin Fever and Release of Arginine Vasopressin by Dehydration in the Guinea Pig. Neuroendocrinology, 1992, 56, 680-686.	2.5	22
92	Gabapentinoids Suppress Lipopolysaccharide-Induced Interleukin-6 Production in Primary Cell Cultures of the Rat Spinal Dorsal Horn. NeuroImmunoModulation, 0, , 1-14.	1.8	1