
Hai-hui Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940352/publications.pdf Version: 2024-02-01

ΗλΙ-ΗΠΙ ΧΙΝ

#	Article	IF	CITATIONS
1	Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics. Combustion and Flame, 2016, 163, 447-460.	5.2	244
2	Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Processing Technology, 2014, 118, 287-295.	7.2	131
3	Effects of Coal Functional Groups on Adsorption Microheat of Coal Bed Methane. Energy & Fuels, 2015, 29, 1550-1557.	5.1	89
4	In Situ FTIR Study of Real-Time Changes of Active Groups during Oxygen-Free Reaction of Coal. Energy & Fuels, 2013, 27, 3130-3136.	5.1	69
5	The Infrared Characterization and Mechanism of Oxygen Adsorption in Coal. Spectroscopy Letters, 2014, 47, 664-675.	1.0	58
6	An In Situ Testing Method for Analyzing the Changes of Active Groups in Coal Oxidation at Low Temperatures. Spectroscopy Letters, 2014, 47, 495-503.	1.0	54
7	Reaction pathways of hydroxyl groups during coal spontaneous combustion. Canadian Journal of Chemistry, 2016, 94, 494-500.	1.1	44
8	A rapid method for determining the R70 self-heating rate of coal. Thermochimica Acta, 2013, 571, 21-27.	2.7	41
9	Oxidation and Self-Reaction of Carboxyl Groups During Coal Spontaneous Combustion. Spectroscopy Letters, 2015, 48, 173-178.	1.0	40
10	In situ FTIR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions. Journal of the Energy Institute, 2019, 92, 1557-1566.	5.3	32
11	The reburning thermal characteristics of residual structure of lignite pyrolysis. Fuel, 2020, 259, 116226.	6.4	26
12	Oxygen consumption and chemisorption in low-temperature oxidation of sub-bituminous pulverized coal. Spectroscopy Letters, 2018, 51, 104-111.	1.0	23
13	Reaction Mechanism of Aldehyde Groups during Coal Self-Heating. ACS Omega, 2020, 5, 23184-23192.	3.5	16
14	Thermogravimetric and infrared spectral analysis of candle coal pyrolysis under low-oxygen concentration. Thermochimica Acta, 2021, 696, 178840.	2.7	16
15	ENVIRONMENTAL HAZARDS OF COAL FIRE AND THEIR PREVENTION IN CHINA. Environmental Engineering and Management Journal, 2013, 12, 1915-1919.	0.6	14
16	The effects of poly(ethylene glycol) on the low-temperature oxidation reaction of coal as monitored using in situ series diffuse reflectance FTIR. Korean Journal of Chemical Engineering, 2014, 31, 801-806.	2.7	9
17	The competitive reaction mechanism between oxidation and pyrolysis consumption during lowâ€rank coal combustion at leanâ€oxygen conditions: A quantitative calculation based on thermogravimetric analyses. Canadian Journal of Chemical Engineering, 2018, 96, 2575-2585.	1.7	9
18	Pyrolysis Characteristics of Jet Coal and Oxidation of Residues in Zhundong Coalfield Fires. ACS Omega, 2021, 6, 20846-20854.	3.5	7

Наі-ниі Хім

#	Article	IF	CITATIONS
19	Coupling Relation between the Location of Cross-Cut Negative Pressure and Injecting Nitrogen into Coal Mine Goaf. ACS Omega, 2021, 6, 8189-8198.	3.5	6
20	Characteristics of Pyrolysis and Low Oxygen Combustion of Long Flame Coal and Reburning of Residues. Energies, 2021, 14, 2944.	3.1	5
21	The structural transformation and reburning characteristics of gas coal in Ningwu coalfield fire. Energy Exploration and Exploitation, 2022, 40, 79-96.	2.3	2
22	Piezoelectric Effect and Ignition Characteristics of Coal Mine Gob Roof Collapse. ACS Omega, 2021, 6, 28936-28945.	3.5	1