
Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature, 2016, 530, 77-80.	13.7	299
2	Approaches to Single-Nanoparticle Catalysis. Annual Review of Physical Chemistry, 2014, 65, 395-422.	4.8	149
3	Ï€-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy. Inorganic Chemistry, 2017, 56, 3245-3259.	1.9	57
4	Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents. Dalton Transactions, 2017, 46, 8091-8103.	1.6	56
5	Distinguishing Direct and Indirect Photoelectrocatalytic Oxidation Mechanisms Using Quantitative Single-Molecule Reaction Imaging and Photocurrent Measurements. Journal of Physical Chemistry C, 2016, 120, 20668-20676.	1.5	45
6	Heteroleptic Ir(III)N ₆ Complexes with Long-Lived Triplet Excited States and in Vitro Photobiological Activities. ACS Applied Materials & Interfaces, 2019, 11, 3629-3644.	4.0	45
7	Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe ₂ . ACS Photonics, 2019, 6, 787-792.	3.2	43
8	Influence of single-nanoparticle electrochromic dynamics on the durability and speed of smart windows. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12666-12671.	3.3	38
9	A cyano-terminated dithienyldiketopyrrolopyrrole dimer as a solution processable ambipolar semiconductor under ambient conditions. Chemical Communications, 2013, 49, 11272.	2.2	37
10	Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides. Nano Letters, 2019, 19, 2960-2967.	4.5	36
11	Probing Charge Carrier Transport and Recombination Pathways in Monolayer MoS ₂ /WS ₂ Heterojunction Photoelectrodes. Nano Letters, 2019, 19, 9084-9094.	4.5	30
12	Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe ₂ Photoelectrodes. ACS Applied Materials & Interfaces, 2019, 11, 19207-19217.	4.0	29
13	Toward Broadband Reverse Saturable Absorption: Investigating the Impact of Cyclometalating Ligand ï€-Conjugation on the Photophysics and Reverse Saturable Absorption of Cationic Heteroleptic Iridium Complexes. Journal of Physical Chemistry C, 2017, 121, 5719-5730.	1.5	28
14	Influence of the Substrate on the Optical and Photo-electrochemical Properties of Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 15034-15042.	4.0	24
15	Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe ₂ Films. Journal of Physical Chemistry C, 2018, 122, 6539-6545.	1.5	23
16	Role of Photogenerated Iodine on the Energy-Conversion Properties of MoSe ₂ Nanoflake Liquid Junction Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 27780-27786.	4.0	17
17	Quantifying Photocurrent Loss of a Single Particle–Particle Interface in Nanostructured Photoelectrodes. Nano Letters, 2019, 19, 958-962.	4.5	13
18	High-Throughput Single-Nanoparticle-Level Imaging of Electrochemical Ion Insertion Reactions. Analytical Chemistry, 2019, 91, 14983-14991.	3.2	12

LI WANG

#	Article	IF	CITATIONS
19	Molecular Reaction Imaging of Single-Entity Photoelectrodes. ACS Energy Letters, 2020, 5, 1474-1486.	8.8	12
20	Bio-inspired short peptide self-assembly: From particles to functional materials. Particuology, 2022, 64, 14-34.	2.0	11
21	Single nanoparticle photoelectrochemistry: What is next?. Journal of Chemical Physics, 2019, 151, 180901.	1.2	10
22	Quantifying Capacitiveâ€Like and Batteryâ€Like Charge Storage Contributions Using Singleâ€Nanoparticle Electroâ€optical Imaging. ChemElectroChem, 2020, 7, 753-760.	1.7	10
23	Surface-Facet-Dependent Electrochromic Properties of WO3 Nanorod Thin Films: Implications for Smart Windows. ACS Applied Nano Materials, 2021, 4, 3750-3759.	2.4	10
24	Synthesis and characterization of ï€-extended thienoacenes with up to 13 fused aromatic rings. Tetrahedron Letters, 2014, 55, 5663-5666.	0.7	9
25	Correlated Single-Molecule Reaction Imaging and Photocurrent Measurements Reveal Underlying Rate Processes in Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2019, 166, H3286-H3293.	1.3	9
26	Heteroleptic cationic iridium(<scp>iii</scp>) complexes bearing phenanthroline derivatives with extended ï€-conjugation as potential broadband reverse saturable absorbers. New Journal of Chemistry, 2020, 44, 456-465.	1.4	8
27	Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior. ACS Applied Materials & Interfaces, 2022, 14, 22737-22746.	4.0	8
28	Synthesis and characterization of oligo(2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene)s: effect of the chain length and end-groups on their optical and charge transport properties. Journal of Materials Chemistry C, 2014, 2, 9978-9986.	2.7	7
29	Novel N ₆ trisbidentate ligand coordinated Ir(<scp>iii</scp>) complexes and their Ru(<scp>ii</scp>) analogs. Dalton Transactions, 2018, 47, 13776-13780.	1.6	5
30	Ensemble-level energy transfer measurements can reveal the spatial distribution of defect sites in semiconductor nanocrystals. Journal of Chemical Physics, 2021, 154, 054704.	1.2	5